Cyclin G1 is involved in G2/M arrest in response to DNA damage and in growth control after damage recovery. 2001

S H Kimura, and M Ikawa, and A Ito, and M Okabe, and H Nojima
Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

Cyclin G1 is one of the target genes of the transcription factor p53, and is induced in a p53-dependent manner in response to DNA damage. Although cyclin G1 has been implicated in a range of biological phenomena, its precise function remains unclear. Here we present an analysis of the physiological role of cyclin G1 using mice homozygous for a targeted disruption of the cyclin G1 gene. In order to clarify the role of cyclin G1 in the p53 pathway, downstream events such as apoptosis, cell growth and cell cycle checkpoint control were analysed in thymocytes and embryonic fibroblasts derived from cyclin G1-disrupted mice. No difference was detected in induction of apoptosis between mouse embryo fibroblasts (MEFs) derived from cyclin G1+/+ and cyclin G1-/- mice. Following irradiation, cyclin G1-/- MEFs proliferated more slowly and reached lower cell densities in culture dishes than cyclin G1+/+ MEFs. Analysis of cell survival showed that cyclin G1-/- MEFs were about twice as sensitive as cyclin G1+/+ MEFs to gamma radiation or UV radiation. Cyclin G1-/- mice were more sensitive to gamma radiation than wild-type mice. Flow cytometeric analysis revealed that the number of cyclin G1-/- MEFs in G2/M phase after irradiation was reduced by 50% relative to cyclin G1+/+ MEFs. Our results demonstrate that cyclin G1 plays roles in G2/M arrest, damage recovery and growth promotion after cellular stress.

UI MeSH Term Description Entries
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D011836 Radiation Tolerance The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS. Radiation Sensitivity,Radiosensitivity,Sensitivity, Radiation,Tolerance, Radiation,Radiation Sensitivities,Radiation Tolerances,Radiosensitivities,Sensitivities, Radiation,Tolerances, Radiation
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D005720 Gamma Rays Penetrating, high-energy electromagnetic radiation emitted from atomic nuclei during NUCLEAR DECAY. The range of wavelengths of emitted radiation is between 0.1 - 100 pm which overlaps the shorter, more energetic hard X-RAYS wavelengths. The distinction between gamma rays and X-rays is based on their radiation source. Gamma Wave,Gamma Radiation,Nuclear X-Rays,Radiation, Gamma,X-Rays, Nuclear,Gamma Radiations,Gamma Ray,Gamma Waves,Nuclear X Rays,Nuclear X-Ray,Ray, Gamma,Wave, Gamma,Waves, Gamma,X Rays, Nuclear,X-Ray, Nuclear
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D014916 Whole-Body Irradiation Irradiation of the whole body with ionizing or non-ionizing radiation. It is applicable to humans or animals but not to microorganisms. Radiation, Whole-Body,Total Body Irradiation,Irradiation, Total Body,Irradiation, Whole-Body,Whole-Body Radiation,Irradiation, Whole Body,Irradiations, Total Body,Irradiations, Whole-Body,Radiation, Whole Body,Radiations, Whole-Body,Total Body Irradiations,Whole Body Irradiation,Whole Body Radiation,Whole-Body Irradiations,Whole-Body Radiations
D016159 Tumor Suppressor Protein p53 Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER. p53 Tumor Suppressor Protein,Cellular Tumor Antigen p53,Oncoprotein p53,TP53 Protein,TRP53 Protein,p53 Antigen,pp53 Phosphoprotein,Phosphoprotein, pp53

Related Publications

S H Kimura, and M Ikawa, and A Ito, and M Okabe, and H Nojima
June 2012, The Journal of biological chemistry,
S H Kimura, and M Ikawa, and A Ito, and M Okabe, and H Nojima
December 1993, Environmental health perspectives,
S H Kimura, and M Ikawa, and A Ito, and M Okabe, and H Nojima
January 2016, PloS one,
S H Kimura, and M Ikawa, and A Ito, and M Okabe, and H Nojima
January 1998, Biochemical and biophysical research communications,
S H Kimura, and M Ikawa, and A Ito, and M Okabe, and H Nojima
September 2008, Cell cycle (Georgetown, Tex.),
S H Kimura, and M Ikawa, and A Ito, and M Okabe, and H Nojima
September 1996, Oncogene,
S H Kimura, and M Ikawa, and A Ito, and M Okabe, and H Nojima
January 2019, Science translational medicine,
S H Kimura, and M Ikawa, and A Ito, and M Okabe, and H Nojima
June 2009, Nature,
S H Kimura, and M Ikawa, and A Ito, and M Okabe, and H Nojima
April 2011, The Biochemical journal,
S H Kimura, and M Ikawa, and A Ito, and M Okabe, and H Nojima
October 1996, Oncogene,
Copied contents to your clipboard!