Reversal effects of nomegestrol acetate on multidrug resistance in adriamycin-resistant MCF7 breast cancer cell line. 2001

J Li, and L Z Xu, and K L He, and W J Guo, and Y H Zheng, and P Xia, and Y Chen
Xin Hua Hospital, Shanghai Second Medical University, Shanghai, China. ljee@citiz.net

BACKGROUND Chemotherapy is important in the systematic treatment of breast cancer. To enhance the response of tumours to chemotherapy, attention has been focused on agents to reverse multidrug resistance (MDR) and on the sensitivity of tumour cells to chemical drugs. Hundreds of reversal drugs have been found in vitro, but their clinical application has been limited because of their toxicity. The reversal activity of progestogen compounds has been demonstrated. However, classical agents such as progesterone and megestrol (MG) also have high toxicity. Nomegestrol (NOM) belongs to a new derivation of progestogens and shows very low toxicity. We studied the reversal activity of NOM and compared it with that of verapamil (VRP), droloxifene (DRO), tamoxifen (TAM) and MG, and investigated the reversal mechanism, i.e. effects on the expression of the MDR1, glutathione S-transferase Pi (GSTpi), MDR-related protein (MRP) and topoisomerase IIalpha (TopoIIalpha) genes, as well as the intracellular drug concentration and the cell cycle. The aim of the study was to examine the reversal effects of NOM on MDR in MCF7/ADR, an MCF7 breast cancer cell line resistant to adriamycin (ADR), and its mechanism of action. METHODS MCF7/ADR cells and MCF7/WT, an MCF7 breast cancer cell line sensitive to ADR, were treated with NOM as the acetate ester. With an assay based on a tetrazolium dye [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide; MTT], the effects of various concentrations of NOM on MDR in MCF7/ADR cells were studied. Before and after the treatment with 5 microM NOM, the expression of the MDR-related genes MDR1, GSTpi, TopoIIalpha and MRP were assayed with a reverse transcriptase polymerase chain reaction (RT-PCR) immunocytochemistry assay. By using flow cytometry (FCM), we observed the intracellular ADR concentration and the effects of combined treatment with NOM and ADR on the cell cycle. Results collected were analysed with Student's t test. RESULTS NOM significantly reversed MDR in MCF7/ADR cells. After treatment NOM at 20, 10 and 5 microM, chemosensitivity to ADR increased 21-fold, 12-fold and 8-fold, respectively. The reversal activity of NOM was stronger than that of the precursor compound MG, and comparable to that of VRP. After treatment with 5 microM NOM, the expression of both the MDR1 and the GSTpi mRNA genes began to decline on the second day (P <0.05 and P <0.01, respectively), and reached the lowest level on the third day (both P <0.01); however, on the fifth day the expression levels began to increase again (both P <0.05). The expression of MRP and TopoIIalpha had no significant changes. Changes in the expression of P-glycoprotein (P-gp) and GSTpi were similar to those of their mRNA expressions, showing early declines and late increases. Two hours after treatment with 20, 10 and 5 microM NOM, the intracellular ADR concentration increased 2.7-fold, 2.3-fold and 1.5-fold respectively. However, NOM did not increase ADR accumulation in MCF7/WT cells. FCM data showed that after 48 h of combined administration of NOM (20 microM) and ADR (from low to high concentration), MCF7/ADR cells showed a gradual arrest at the G2M phase with increasing ADR dose. The arrest effect with combined drug treatment was stronger than that with the single ADR treatment. CONCLUSIONS MDR is the major mechanism of drug resistance in malignant tumour cells. To overcome MDR and to increase chemosensitivity, many reversal agents have been found. Most progestogen compounds have been demonstrated to have reversal effects, but we found no data on NOM, a new progestogen compound. Our results show that NOM has strong reversal activity. The reversal effects were stronger than those of the precursor compound, MG, and were comparable to that of VRP. Because NOM has low toxicity, it might have good prospects in clinical application. Using RT-PCR and immunocytochemistry assays, we studied the effects of NOM on MDR-related genes. The results were that NOM could markedly downregulate the mRNA and protein expression levels of MDR1 and GSTpi. TopoIIalpha and MRP gene expression showed no significant changes. It is known that P-gp induces MDR in tumour cells mainly by decreasing the intracellular drug concentration. After treatment with NOM, the intracellular drug concentration in MCF7/ADR cells increased significantly. Combined treatment with NOM and ADR induced arrest at the G2M phase. It is worth noting that NOM caused an early decrease and a late increase in the expression of some MDR-related genes in a time-dependent manner. The phenomena raise a question for the continued administration of reversal agents in clinics that merits further study. We demonstrate that NOM has strong reversal effects on MDR in MCF7/ADR cells. The reversal is via different routes, namely downregulating the mRNA and protein expression levels of MDR1 and GSTpi, increasing intracellular drug concentration and arresting cells at the G2M phase (NOM in combination with ADR). The reversal mechanism needs further study.

UI MeSH Term Description Entries
D008535 Megestrol A progestational hormone used most commonly as the acetate ester. As the acetate, it is more potent than progesterone both as a progestagen and as an ovulation inhibitor. It has also been used in the palliative treatment of breast cancer. 17-Hydroxy-6-methylpregna-3,6-diene-3,20-dione,Pregna-4,6-diene-3,20-dione, 17-hydroxy-6-methyl-
D009649 Norpregnadienes Pregnadienes which have undergone ring contractions or are lacking carbon-18 or carbon-19.
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D005260 Female Females
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy

Related Publications

J Li, and L Z Xu, and K L He, and W J Guo, and Y H Zheng, and P Xia, and Y Chen
September 1991, British journal of cancer,
J Li, and L Z Xu, and K L He, and W J Guo, and Y H Zheng, and P Xia, and Y Chen
June 2005, Zhonghua zhong liu za zhi [Chinese journal of oncology],
J Li, and L Z Xu, and K L He, and W J Guo, and Y H Zheng, and P Xia, and Y Chen
November 2014, Experimental and therapeutic medicine,
J Li, and L Z Xu, and K L He, and W J Guo, and Y H Zheng, and P Xia, and Y Chen
December 1992, The Kobe journal of medical sciences,
J Li, and L Z Xu, and K L He, and W J Guo, and Y H Zheng, and P Xia, and Y Chen
December 2015, Sheng li xue bao : [Acta physiologica Sinica],
J Li, and L Z Xu, and K L He, and W J Guo, and Y H Zheng, and P Xia, and Y Chen
January 2012, Talanta,
J Li, and L Z Xu, and K L He, and W J Guo, and Y H Zheng, and P Xia, and Y Chen
April 2013, Genomics,
J Li, and L Z Xu, and K L He, and W J Guo, and Y H Zheng, and P Xia, and Y Chen
September 2014, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine,
J Li, and L Z Xu, and K L He, and W J Guo, and Y H Zheng, and P Xia, and Y Chen
April 2007, World journal of gastroenterology,
Copied contents to your clipboard!