Differential sensitivity of Chinese hamster V79 and Chinese hamster ovary (CHO) cells in the in vitro micronucleus screening assay. 2001

G L Erexson, and M V Periago, and C S Spicer
Covance Laboratories, Inc., Department of Genetic and Molecular Toxicology, 9200 Leesburg Pike, Vienna, VA 22182, USA. gregory.erexson@covance.com

Both the V79 and CHO cell lines are routinely used in the in vitro MN screening assay for the detection of possible genotoxicants. The CHO cell line is the predominant cell line currently used in the genetic toxicology testing industry. However, some laboratories routinely utilize the V79 cell line since the in vitro MN screening assay was initially developed using V79 cells. Our laboratory has historically used the CHO cell line. Therefore, our laboratory was interested in comparing the two cell lines with regard to possible similarities or differences in MN induction sensitivity after exposure to cyclophosphamide (CPA) and mitomycin C (MMC), the two standard positive control chemicals routinely used in this assay. Three exposure conditions in the presence of CPA and MMC were examined in both cell lines. Replicate cultures of CHO cells in McCoy's 5A and V79 cells in both McCoy's 5A and E-MEM were established and treated with 5 microg CPA/ml (4h exposure with S9), 0.5 microg MMC (4h exposure without S9) and 0.5 microg MMC (24h exposure without S9). A total of 400 cytochalasin B-blocked binucleated cells and 200 consecutive cells were analyzed from each culture for MN and cell cycle kinetics, respectively. Analysis of the data demonstrated that CHO cells were up to approximately five-fold more sensitive to the induction of CPA- and MMC-induced MN than V79 cells. Both cell lines exhibited similar average generation times among identical exposure groups. Therefore, the difference in MN sensitivity cannot be attributed to possible differences in cell cycle kinetics and is possibly related to inherent cellular differences in the processing of and/or repair of CPA- and MMC-induced damage by V79 and CHO cells.

UI MeSH Term Description Entries
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D003520 Cyclophosphamide Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer. (+,-)-2-(bis(2-Chloroethyl)amino)tetrahydro-2H-1,3,2-oxazaphosphorine 2-Oxide Monohydrate,B-518,Cyclophosphamide Anhydrous,Cyclophosphamide Monohydrate,Cyclophosphamide, (R)-Isomer,Cyclophosphamide, (S)-Isomer,Cyclophosphane,Cytophosphan,Cytophosphane,Cytoxan,Endoxan,NSC-26271,Neosar,Procytox,Sendoxan,B 518,B518,NSC 26271,NSC26271
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D015162 Micronucleus Tests Induction and quantitative measurement of chromosomal damage leading to the formation of micronuclei (MICRONUCLEI, CHROMOSOME-DEFECTIVE) in cells which have been exposed to genotoxic agents or IONIZING RADIATION. Micronucleus Assays,Assay, Micronucleus,Assays, Micronucleus,Micronucleus Assay,Micronucleus Test,Test, Micronucleus,Tests, Micronucleus
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO
D016685 Mitomycin An antineoplastic antibiotic produced by Streptomyces caespitosus. It is one of the bi- or tri-functional ALKYLATING AGENTS causing cross-linking of DNA and inhibition of DNA synthesis. Mitomycin C,Ametycine,Mitocin-C,Mitomycin-C,Mutamycin,NSC-26980,Mitocin C,MitocinC,NSC 26980,NSC26980

Related Publications

G L Erexson, and M V Periago, and C S Spicer
June 2011, Environmental and molecular mutagenesis,
G L Erexson, and M V Periago, and C S Spicer
August 2002, Mutation research,
G L Erexson, and M V Periago, and C S Spicer
May 1990, Mutagenesis,
G L Erexson, and M V Periago, and C S Spicer
January 1998, Environmental and molecular mutagenesis,
G L Erexson, and M V Periago, and C S Spicer
April 2010, Current pharmaceutical biotechnology,
G L Erexson, and M V Periago, and C S Spicer
November 1980, Mutation research,
G L Erexson, and M V Periago, and C S Spicer
May 2008, Biochemical and biophysical research communications,
Copied contents to your clipboard!