Endothelin-1 and nitric oxide affect human cerebromicrovascular endothelial responses and signal transduction. 2000

Y Chen, and R M McCarron, and N Azzam, and J Bembry, and C Reutzler, and F A Lenz, and M Spatz
Naval Medical Research Center, Bethesda, MD, USA.

Endothelium plays a central role in regulating the vascular tone, blood flow and blood brain barrier (BBB) permeability. The experiments presented here examine the mechanisms by which nitric oxide (NO) and endothelin-1 (ET-1) may be involved in these processes. The findings indicate that ET-1-stimulated [Ca2+]i accumulation occurs through activation of ETA receptor. The capacity of NO to affect this response was indicated by results showing: 1) a two-fold increase in ET-1-stimulated [Ca2+]i by L-NAME, the inhibitor of nitric oxide synthase, and 2) a dose-dependent decrease in [Ca2+]i accumulation by pretreatment with Nor-1 (NO donor). Abrogation of this Nor-1 effect by ODQ (an inhibitor of guanylyl cyclase) or Rp-8-pCPT-cGMPS (an inhibitor of protein kinase G) and inhibition of ET-1 stimulated intracellular Ca2+ accumulation by 8-bromo-cGMP (a permeable, analog of cGMP) substantiate the involvement of interplay between ET-1 and NO in [Ca2+]i accumulation in HBMEC. ET-1 treatment also increased thickness of F-actin cytoskeletal filaments in HBMEC. This effect was attenuated by pretreatment with NO; NO also rarefied F-actin filaments in control cultures. The findings support a linkage between NO and ET-1 in regulating microvascular tone, microcirculation and BBB permeability and indicate a role for cGMP/cGMP protein kinase system and cytoskeletal changes in responses of HBMEC.

UI MeSH Term Description Entries
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001929 Brain Edema Increased intracellular or extracellular fluid in brain tissue. Cytotoxic brain edema (swelling due to increased intracellular fluid) is indicative of a disturbance in cell metabolism, and is commonly associated with hypoxic or ischemic injuries (see HYPOXIA, BRAIN). An increase in extracellular fluid may be caused by increased brain capillary permeability (vasogenic edema), an osmotic gradient, local blockages in interstitial fluid pathways, or by obstruction of CSF flow (e.g., obstructive HYDROCEPHALUS). (From Childs Nerv Syst 1992 Sep; 8(6):301-6) Brain Swelling,Cerebral Edema,Cytotoxic Brain Edema,Intracranial Edema,Vasogenic Cerebral Edema,Cerebral Edema, Cytotoxic,Cerebral Edema, Vasogenic,Cytotoxic Cerebral Edema,Vasogenic Brain Edema,Brain Edema, Cytotoxic,Brain Edema, Vasogenic,Brain Swellings,Cerebral Edemas, Vasogenic,Edema, Brain,Edema, Cerebral,Edema, Cytotoxic Brain,Edema, Cytotoxic Cerebral,Edema, Intracranial,Edema, Vasogenic Brain,Edema, Vasogenic Cerebral,Swelling, Brain
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Y Chen, and R M McCarron, and N Azzam, and J Bembry, and C Reutzler, and F A Lenz, and M Spatz
January 2002, Molecular and cellular biochemistry,
Y Chen, and R M McCarron, and N Azzam, and J Bembry, and C Reutzler, and F A Lenz, and M Spatz
February 1994, Journal of neurochemistry,
Y Chen, and R M McCarron, and N Azzam, and J Bembry, and C Reutzler, and F A Lenz, and M Spatz
January 2006, Molecular nutrition & food research,
Y Chen, and R M McCarron, and N Azzam, and J Bembry, and C Reutzler, and F A Lenz, and M Spatz
July 2009, American journal of physiology. Heart and circulatory physiology,
Y Chen, and R M McCarron, and N Azzam, and J Bembry, and C Reutzler, and F A Lenz, and M Spatz
March 1994, Neuropeptides,
Y Chen, and R M McCarron, and N Azzam, and J Bembry, and C Reutzler, and F A Lenz, and M Spatz
February 1991, Biochemical pharmacology,
Y Chen, and R M McCarron, and N Azzam, and J Bembry, and C Reutzler, and F A Lenz, and M Spatz
September 2004, Nihon rinsho. Japanese journal of clinical medicine,
Y Chen, and R M McCarron, and N Azzam, and J Bembry, and C Reutzler, and F A Lenz, and M Spatz
January 2014, Biotechnology journal,
Y Chen, and R M McCarron, and N Azzam, and J Bembry, and C Reutzler, and F A Lenz, and M Spatz
March 2007, Journal of the American Society of Nephrology : JASN,
Y Chen, and R M McCarron, and N Azzam, and J Bembry, and C Reutzler, and F A Lenz, and M Spatz
August 1998, Sheng li xue bao : [Acta physiologica Sinica],
Copied contents to your clipboard!