Conformational changes of yeast tRNAPhe and E. coli tRNA2Glu as indicated by different nuclease digestion patterns. 1979

P Wrede, and R Wurst, and J Vournakis, and A Rich

The susceptibility of yeast tRNAPhe and Escherichia coli tRNA2Glu to digestion by nucleases Tl and Sl are examined in a variety of environments, and the results are interpreted in view of the available three-dimensional structural information. Significant differences are found in the digestion pattern of the two tRNAs using the guanosine-specific Tl nuclease. In particular, differences are seen due to varying the type of salts in the environment. However, the Sl nuclease results on the two tRNAs do not differ greatly. E. coli tRNA2Glu is known to exist in two different conformations. Nuclease digestion results are presented revealing differences which make it possible to draw some inferences about the structural differences in these two conformations. In carrying out these analyses, the tRNA molecules are labeled either by putting 32P at the 5'-end of the molecular or by adding 32P-labeled pCp at the 3'-end. It is found that both yeast tRNAPhe and E. coli tRNA2Glu have modified Tl nuclease digestion patterns when pCp is added at the 3'-end of the molecule.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009843 Oligoribonucleotides A group of ribonucleotides (up to 12) in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006163 Ribonuclease T1 An enzyme catalyzing the endonucleolytic cleavage of RNA at the 3'-position of a guanylate residue. EC 3.1.27.3. Guanyloribonuclease,RNase T1,Ribonuclease N1,Aspergillus oryzae Ribonuclease,Guanyl-Specific RNase,RNase Apl,RNase F1,RNase Pch 1,RNase ST,Ribonuclease F1,Ribonuclease F2,Ribonuclease ST,Ribonuclease T-1,T 1 RNase,Guanyl Specific RNase,RNase, Guanyl-Specific,RNase, T 1,Ribonuclease T 1,Ribonuclease, Aspergillus oryzae
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer

Related Publications

P Wrede, and R Wurst, and J Vournakis, and A Rich
August 1981, Biochimica et biophysica acta,
P Wrede, and R Wurst, and J Vournakis, and A Rich
May 1981, Journal of biochemistry,
P Wrede, and R Wurst, and J Vournakis, and A Rich
April 1981, European journal of biochemistry,
P Wrede, and R Wurst, and J Vournakis, and A Rich
July 1973, European journal of biochemistry,
P Wrede, and R Wurst, and J Vournakis, and A Rich
February 1974, Nucleic acids research,
P Wrede, and R Wurst, and J Vournakis, and A Rich
January 1986, Cellular and molecular biology,
P Wrede, and R Wurst, and J Vournakis, and A Rich
December 1983, Journal of biochemistry,
P Wrede, and R Wurst, and J Vournakis, and A Rich
January 1986, European biophysics journal : EBJ,
P Wrede, and R Wurst, and J Vournakis, and A Rich
April 2000, Biochemistry,
P Wrede, and R Wurst, and J Vournakis, and A Rich
January 2002, Biochimie,
Copied contents to your clipboard!