Signal transduction pathways in directed migration of human monocytes induced by human growth hormone in vitro. 2001

C M Kähler, and A B Pischel, and T Haller, and C Meierhofer, and A Djanani, and G Kaufmann, and C J Wiedermann
Pneumology Service, Department of General Internal Medicine, Faculty of Medicine, University of Innsbruck, Anichstrasse, 35, 6020 Innsbruck, Austria.

The human growth hormone (GH) was shown to modulate leukocyte functions such as stimulating directed migration of human monocytes in vitro. Dimerisation of GH-receptors leads to the activation of various signalling mechanisms. As transduction of GH signals to monocytes is unknown, we investigated GH signalling mechanisms in monocyte migration using a modified Boyden chamber chemotaxis assay. Inhibition of tyrosyl phosphorylation of GH receptor-associated tyrosine kinase by tyrphostin-23 or staurosporine blocked GH-stimulated monocyte migration down to random levels. Furthermore, pre-incubation with effective concentrations of 4B-phorbol-12-myristate-13-acetate (PMA), staurosporine and bisindolylmaleimide I, inhibitors of protein kinase C, significantly decreased GH-induced migration, suggesting that PKC is involved in the signalling cascade. Additionally, phosphatidylinositol 3-kinase and mitogen-activated protein kinase (MAPK) activation seems to be required. This study revealed signalling pathways in monocyte movement toward GH in vitro.

UI MeSH Term Description Entries
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011986 Receptors, Somatotropin Cell surface proteins that bind GROWTH HORMONE with high affinity and trigger intracellular changes influencing the behavior of cells. Activation of growth hormone receptors regulates amino acid transport through cell membranes, RNA translation to protein, DNA transcription, and protein and amino acid catabolism in many cell types. Many of these effects are mediated indirectly through stimulation of the release of somatomedins. Growth Hormone Receptors,Receptors, Growth Hormone,Somatomammotropin Receptors,Somatotropin Receptors,Growth Hormone Receptor,Receptor, Growth Hormone,Receptors, Somatomammotropin,Somatomammotropin Receptor,Somatotropin Receptor,Hormone Receptor, Growth,Hormone Receptors, Growth
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002634 Chemotaxis, Leukocyte The movement of leukocytes in response to a chemical concentration gradient or to products formed in an immunologic reaction. Leukotaxis,Leukocyte Chemotaxis

Related Publications

C M Kähler, and A B Pischel, and T Haller, and C Meierhofer, and A Djanani, and G Kaufmann, and C J Wiedermann
July 2009, Circulation,
C M Kähler, and A B Pischel, and T Haller, and C Meierhofer, and A Djanani, and G Kaufmann, and C J Wiedermann
June 2002, Journal of pediatric endocrinology & metabolism : JPEM,
C M Kähler, and A B Pischel, and T Haller, and C Meierhofer, and A Djanani, and G Kaufmann, and C J Wiedermann
July 1997, The Journal of pediatrics,
C M Kähler, and A B Pischel, and T Haller, and C Meierhofer, and A Djanani, and G Kaufmann, and C J Wiedermann
November 1993, Experientia,
C M Kähler, and A B Pischel, and T Haller, and C Meierhofer, and A Djanani, and G Kaufmann, and C J Wiedermann
October 2017, Annual review of cell and developmental biology,
C M Kähler, and A B Pischel, and T Haller, and C Meierhofer, and A Djanani, and G Kaufmann, and C J Wiedermann
February 1996, Biochemical Society transactions,
C M Kähler, and A B Pischel, and T Haller, and C Meierhofer, and A Djanani, and G Kaufmann, and C J Wiedermann
July 1994, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
C M Kähler, and A B Pischel, and T Haller, and C Meierhofer, and A Djanani, and G Kaufmann, and C J Wiedermann
September 1994, Immunology,
C M Kähler, and A B Pischel, and T Haller, and C Meierhofer, and A Djanani, and G Kaufmann, and C J Wiedermann
February 2008, Arteriosclerosis, thrombosis, and vascular biology,
C M Kähler, and A B Pischel, and T Haller, and C Meierhofer, and A Djanani, and G Kaufmann, and C J Wiedermann
January 2004, Cell biology international,
Copied contents to your clipboard!