Role of metastability and acidic pH in membrane fusion by tick-borne encephalitis virus. 2001

K Stiasny, and S L Allison, and C W Mandl, and F X Heinz
Institute of Virology, University of Vienna, A-1095 Vienna, Austria. karin.stiasny@univie.ac.at

The envelope protein E of the flavivirus tick-borne encephalitis (TBE) virus is, like the alphavirus E1 protein, a class II viral fusion protein that differs structurally and probably mechanistically from class I viral fusion proteins. The surface of the native TBE virion is covered by an icosahedrally symmetrical network of E homodimers, which mediate low-pH-induced fusion in endosomes. At the pH of fusion, the E homodimers are irreversibly converted to a homotrimeric form, which we have found by intrinsic fluorescence measurements to be more stable than the native dimers. Thus, the TBE virus E protein is analogous to the prototypical class I fusion protein, the influenza virus hemagglutinin (HA), in that it is initially synthesized in a metastable state that is energetically poised to be converted to the fusogenic state by exposure to low pH. However, in contrast to what has been observed with influenza virus HA, this transition could not be triggered by input of heat energy alone and membrane fusion could be induced only when the virus was exposed to an acidic pH. In a previous study we showed that the dimer-to-trimer transition appears to be a two-step process involving a reversible dissociation of the dimer followed by an irreversible trimerization of the dissociated monomeric subunits. Because the dimer-monomer equilibrium in the first step apparently depends on the protonation state of E, the lack of availability of monomers for the trimerization step at neutral pH could explain why low pH is essential for fusion in spite of the metastability of the native E dimer.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D004669 Encephalitis Viruses, Tick-Borne A subgroup of the genus FLAVIVIRUS that causes encephalitis and hemorrhagic fevers and is found in eastern and western Europe and the former Soviet Union. It is transmitted by TICKS and there is an associated milk-borne transmission from viremic cattle, goats, and sheep. Hemorrhagic Fever Virus, Omsk,Kyasanur Forest disease virus,Langat virus,Louping ill virus,Omsk hemorrhagic fever virus,Powassan virus,Al-Khurma Hemorrhagic Fever Virus,Al-Khurma virus,Al-Khurma virus (ALKV),Alkhurma Hemorrhagic Fever Virus,Alkhurma virus,Alkhurma virus (ALKV),Encephalitis Virus, Tick-Borne,Tick-Borne Encephalitis Virus,Tick-Borne Encephalitis Viruses,Viruses, Tick-Borne Encephalitis,Al Khurma Hemorrhagic Fever Virus,Al Khurma virus,Al Khurma virus (ALKV),Encephalitis Virus, Tick Borne,Encephalitis Viruses, Tick Borne,Louping ill viruses,Tick Borne Encephalitis Virus,Tick Borne Encephalitis Viruses
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014759 Viral Envelope Proteins Integral membrane proteins that are incorporated into the VIRAL ENVELOPE. They are glycosylated during VIRAL ASSEMBLY. Envelope Proteins, Viral,Viral Envelope Glycoproteins,Viral Envelope Protein,Virus Envelope Protein,Virus Peplomer Proteins,Bovine Leukemia Virus Glycoprotein gp51,Hepatitis Virus (MHV) Glycoprotein E2,LaCrosse Virus Envelope Glycoprotein G1,Simian Sarcoma Virus Glycoprotein 70,Viral Envelope Glycoprotein gPr90 (Murine Leukemia Virus),Viral Envelope Glycoprotein gp55 (Friend Virus),Viral Envelope Proteins E1,Viral Envelope Proteins E2,Viral Envelope Proteins gp52,Viral Envelope Proteins gp70,Virus Envelope Proteins,Envelope Glycoproteins, Viral,Envelope Protein, Viral,Envelope Protein, Virus,Envelope Proteins, Virus,Glycoproteins, Viral Envelope,Peplomer Proteins, Virus,Protein, Viral Envelope,Protein, Virus Envelope,Proteins, Viral Envelope,Proteins, Virus Envelope,Proteins, Virus Peplomer
D019281 Dimerization The process by which two molecules of the same chemical composition form a condensation product or polymer. Dimerizations

Related Publications

K Stiasny, and S L Allison, and C W Mandl, and F X Heinz
January 1991, Archives of virology,
K Stiasny, and S L Allison, and C W Mandl, and F X Heinz
August 2004, Journal of virology,
K Stiasny, and S L Allison, and C W Mandl, and F X Heinz
January 2010, Biochemistry,
K Stiasny, and S L Allison, and C W Mandl, and F X Heinz
February 2021, The Journal of infectious diseases,
K Stiasny, and S L Allison, and C W Mandl, and F X Heinz
May 2022, Journal of medical microbiology,
K Stiasny, and S L Allison, and C W Mandl, and F X Heinz
February 2023, PLoS pathogens,
K Stiasny, and S L Allison, and C W Mandl, and F X Heinz
January 1991, Voprosy virusologii,
K Stiasny, and S L Allison, and C W Mandl, and F X Heinz
December 2021, Viruses,
K Stiasny, and S L Allison, and C W Mandl, and F X Heinz
July 1959, Acta virologica,
K Stiasny, and S L Allison, and C W Mandl, and F X Heinz
May 2011, Emerging infectious diseases,
Copied contents to your clipboard!