Bioinorganic composites for enzyme electrodes. 2001

L Chen, and W Gorski
Division of Earth and Physical Sciences, The University of Texas at San Antonio, 78249-0663, USA.

Sparingly soluble redox salts were combined with a model enzyme, glucose oxidase, in a host matrix of a biopolymer chitosan to form bioinorganic composite films on the surface of glassy carbon electrodes. Four redox salts, each containing the Ru(NH3)6(3+) cation and a selected anion, such as Ru(CN)6(4-), Fe(CN)6(4-), Co(CN)6(3-) or IrCl6(3-), were studied. The composition and catalytic properties of such composite materials toward glucose oxidation were investigated by spectroscopic and electrochemical methods. The composite films provided an oxygen-independent electrical communication between the enzyme's redox centers and a glassy carbon surface at a potential as low as -0.10 V vs Ag/AgCl(3 M Cl-). The nature of the electrical communication is discussed in terms of redox mediation by the Ru(NH3)6(3+)-containing ion pairs formed inside the biocomposites. The kinetic significance of the mediator's charge is considered by postulating that neutral ion pairs are more efficient redox mediators of the enzymatic reaction than those negatively charged. The low operating potential of enzyme electrodes based on the bioinorganic composites allows for an interference-free determination of glucose. The design of the biocomposites is generic and can incorporate oxidoreductase enzymes other than glucose oxidase to provide a host of biosensors for biologically and environmentally important analytes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D004566 Electrodes Electric conductors through which electric currents enter or leave a medium, whether it be an electrolytic solution, solid, molten mass, gas, or vacuum. Anode,Anode Materials,Cathode,Cathode Materials,Anode Material,Anodes,Cathode Material,Cathodes,Electrode,Material, Anode,Material, Cathode
D004800 Enzymes, Immobilized Enzymes which are immobilized on or in a variety of water-soluble or water-insoluble matrices with little or no loss of their catalytic activity. Since they can be reused continuously, immobilized enzymes have found wide application in the industrial, medical and research fields. Immobilized Enzymes,Enzyme, Immobilized,Immobilized Enzyme
D005949 Glucose Oxidase An enzyme of the oxidoreductase class that catalyzes the conversion of beta-D-glucose and oxygen to D-glucono-1,5-lactone and peroxide. It is a flavoprotein, highly specific for beta-D-glucose. The enzyme is produced by Penicillium notatum and other fungi and has antibacterial activity in the presence of glucose and oxygen. It is used to estimate glucose concentration in blood or urine samples through the formation of colored dyes by the hydrogen peroxide produced in the reaction. (From Enzyme Nomenclature, 1992) EC 1.1.3.4. Microcid,Oxidase, Glucose
D015374 Biosensing Techniques Any of a variety of procedures which use biomolecular probes to measure the presence or concentration of biological molecules, biological structures, microorganisms, etc., by translating a biochemical interaction at the probe surface into a quantifiable physical signal. Bioprobes,Biosensors,Electrodes, Enzyme,Biosensing Technics,Bioprobe,Biosensing Technic,Biosensing Technique,Biosensor,Electrode, Enzyme,Enzyme Electrode,Enzyme Electrodes,Technic, Biosensing,Technics, Biosensing,Technique, Biosensing,Techniques, Biosensing

Related Publications

L Chen, and W Gorski
May 2022, Journal of the American Chemical Society,
L Chen, and W Gorski
May 1986, Analytical chemistry,
L Chen, and W Gorski
April 1977, Zeitschrift fur medizinische Laboratoriumsdiagnostik,
L Chen, and W Gorski
April 1973, Science (New York, N.Y.),
L Chen, and W Gorski
March 2005, Mini reviews in medicinal chemistry,
L Chen, and W Gorski
May 2007, Journal of colloid and interface science,
L Chen, and W Gorski
April 2015, Current opinion in chemical biology,
L Chen, and W Gorski
October 1980, Journal of food protection,
L Chen, and W Gorski
January 1986, Biosensors,
L Chen, and W Gorski
January 2022, Frontiers in bioengineering and biotechnology,
Copied contents to your clipboard!