Biotransformation of xenobiotics by amine oxidases. 2001

M S Benedetti
UCB Pharma, 21 rue de Neuilly, B.P. 314, 92003 Nanterre, France. margherita.strolin@ucb-group.com

Although the cytochrome P450 (CYP) system ranks first in terms of catalytic versatility and the wide range of xenobiotics it detoxifies or activates to reactive intermediates, the contribution of amine oxidases and in particular of monoamine oxidases (MAOs) to the metabolism of xenobiotics is far from negligible but has been largely neglected. In this review on the involvement of amine oxidases in the metabolism of xenobiotics, the major characteristics reported for the CYP system (protein, reaction, tissue distribution, subcellular localisation, substrates, inhibitors, inducers, genetic polymorphism, impact of different physiopathological conditions on the activity, turnover) will be compared, whenever possible, with the corresponding characteristics of amine oxidases (MAOs in particular). The knowledge of the involvement of MAO-A, -B or both in the metabolism of a drug allows us to predict interactions with selective or non-selective MAO inhibitors (e.g. the metabolism of a drug deaminated by both forms of MAO is not necessarily inhibited in vivo by a selective MAO-A or -B inhibitor). If a drug is metabolized by MAOs, competitive interactions can occur with other drugs that are MAO substrates, e.g. with beta-adrenoceptor agonists and antagonists, prodrugs of dopamine, serotonin 5-HT1-receptor agonists as well as with primaquine, flurazepam and citalopram. Moreover, the knowledge of the involvement of MAOs in the metabolism of a drug may suggest possible, although not obligatory, interactions with tyramine-containing food or drink, with over the counter medicines sold to relieve the symptoms of coughs and colds (generally containing the indirectly-acting sympathomimetic amine phenylpropanolamine) or with phenylephrine-containing preparations. Finally, biotransformation by amine oxidases, as by CYP, does not always lead to detoxication but can produce toxic compounds.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D008996 Monoamine Oxidase Inhibitors A chemically heterogeneous group of drugs that have in common the ability to block oxidative deamination of naturally occurring monoamines. (From Gilman, et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p414) MAO Inhibitor,MAO Inhibitors,Reversible Inhibitors of Monoamine Oxidase,Monoamine Oxidase Inhibitor,RIMA (Reversible Inhibitor of Monoamine Oxidase A),Reversible Inhibitor of Monoamine Oxidase,Inhibitor, MAO,Inhibitor, Monoamine Oxidase,Inhibitors, MAO,Inhibitors, Monoamine Oxidase
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005182 Flavin-Adenine Dinucleotide A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972) FAD,Flavitan,Dinucleotide, Flavin-Adenine,Flavin Adenine Dinucleotide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000097667 Polyamine Oxidase An FAD-dependent enzyme in the polyamine catabolism pathway that generates hydrogen peroxide. Present with high activity in most tissues of vertebrate organisms. Aminoacetone Oxidase,N(1)-acetylpolyamine Oxidase,Non-Specific Polyamine Oxidase,Polyamine Oxidase (Propane-1,3-diamine-forming),Spermidine Oxidase,Spermine Oxidase
D000587 Oxidoreductases Acting on CH-NH Group Donors Enzymes catalyzing the dehydrogenation of secondary amines, introducing a C Secondary Amine Oxidoreductases,Amine Oxidoreductases, Secondary Amine,Amine Oxidoreductases, Secondary,Oxidoreductases Acting on CH NH Group Donors,Oxidoreductases, Secondary Amine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M S Benedetti
August 2020, Phytochemistry,
M S Benedetti
January 1968, Therapie,
M S Benedetti
December 1958, The Journal of pharmacology and experimental therapeutics,
M S Benedetti
January 1971, Methods of biochemical analysis,
M S Benedetti
January 2002, Zhurnal evoliutsionnoi biokhimii i fiziologii,
M S Benedetti
April 1992, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
M S Benedetti
January 2014, Nucleic acids research,
M S Benedetti
January 1980, Pharmacology & therapeutics,
Copied contents to your clipboard!