Effects of 5-HT2 and 5-HT3 receptors on the modulation of nociceptive transmission in rat spinal cord according to the formalin test. 2001

M Sasaki, and K Ishizaki, and H Obata, and F Goto
Department of Anesthesiology and Reanimatology, Gunma University School of Medicine, 3-39-22 Shouwa-machi, Gunma, 371-8511, Maebashi, Japan. sasakim@showa.gunma-u.ac.jp

We used the formalin test to clarify the 5-hydroxytryptamine (5-HT) receptor subtypes involved in the modulation of spinal nociceptive transmission in rats. Intrathecal administration of a 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)-tetraline (8-OH-DPAT; 1, 10, and 30 microg), or a 5-HT1B receptor agonist, 1, 4-dihydro-3-(1, 2, 3, 6-tetrahydro-4-pyridinyl)-5H-pyrrol (3, 2-b) pyridin-5-one (CP 93129; 1 and 10 microg), produced no significant change in the number of flinches. A 5-HT(2) receptor agonist, (+/-)-2, 5-dimethoxy-4-iodoamphetamine (DOI; 10, 30, and 100 microg), and a 5-HT3 receptor agonist, 2-methyl-5-HT (100 and 300 microg), produced dose-dependent decreases in the number of flinches in phases 1 (1 to 6 min) and 2 (10 to 61 min) of the test. The antinociceptive effects of DOI and 2-methyl-5-HT were antagonized by intrathecal pretreatment with a 5-HT2 receptor antagonist, ketanserin, and a 5-HT3 receptor antagonist, 3-tropanyl-3, 5-dichlorobenzoate (MDL-72222), respectively. These results suggest that 5-HT2 and 5-HT3 receptors in the spinal cord mediate antinociception to chemical stimuli.

UI MeSH Term Description Entries
D007278 Injections, Spinal Introduction of therapeutic agents into the spinal region using a needle and syringe. Injections, Intraspinal,Injections, Intrathecal,Intraspinal Injections,Intrathecal Injections,Spinal Injections,Injection, Intraspinal,Injection, Intrathecal,Injection, Spinal,Intraspinal Injection,Intrathecal Injection,Spinal Injection
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D010147 Pain Measurement Scales, questionnaires, tests, and other methods used to assess pain severity and duration in patients or experimental animals to aid in diagnosis, therapy, and physiological studies. Analgesia Tests,Analogue Pain Scale,Formalin Test,McGill Pain Questionnaire,Nociception Tests,Pain Assessment,Pain Intensity,Pain Severity,Tourniquet Pain Test,Visual Analogue Pain Scale,Analog Pain Scale,Assessment, Pain,McGill Pain Scale,Visual Analog Pain Scale,Analgesia Test,Analog Pain Scales,Analogue Pain Scales,Formalin Tests,Intensity, Pain,Measurement, Pain,Nociception Test,Pain Assessments,Pain Intensities,Pain Measurements,Pain Questionnaire, McGill,Pain Scale, Analog,Pain Scale, Analogue,Pain Scale, McGill,Pain Severities,Pain Test, Tourniquet,Questionnaire, McGill Pain,Scale, Analog Pain,Scale, Analogue Pain,Scale, McGill Pain,Severity, Pain,Test, Analgesia,Test, Formalin,Test, Nociception,Test, Tourniquet Pain,Tests, Nociception,Tourniquet Pain Tests
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D011758 Pyrroles Azoles of one NITROGEN and two double bonds that have aromatic chemical properties. Pyrrole
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

M Sasaki, and K Ishizaki, and H Obata, and F Goto
August 2009, Neuroscience,
M Sasaki, and K Ishizaki, and H Obata, and F Goto
February 1990, Brain research,
M Sasaki, and K Ishizaki, and H Obata, and F Goto
July 1991, Neuropharmacology,
M Sasaki, and K Ishizaki, and H Obata, and F Goto
March 2018, Neurogastroenterology and motility,
M Sasaki, and K Ishizaki, and H Obata, and F Goto
August 1997, Brain research,
M Sasaki, and K Ishizaki, and H Obata, and F Goto
December 1995, Brain research,
M Sasaki, and K Ishizaki, and H Obata, and F Goto
December 1990, Brain research,
M Sasaki, and K Ishizaki, and H Obata, and F Goto
May 1991, Brain research,
M Sasaki, and K Ishizaki, and H Obata, and F Goto
January 2002, Neuroreport,
M Sasaki, and K Ishizaki, and H Obata, and F Goto
January 1995, Neuroreport,
Copied contents to your clipboard!