Effects of protein kinase inhibitor, HA1077, on intraocular pressure and outflow facility in rabbit eyes. 2001

M Honjo, and M Inatani, and N Kido, and T Sawamura, and B Y Yue, and Y Honda, and H Tanihara
Department of Ophthalmology and Visual Sciences, Kyoto University School of Medicine, Kyoto, Japan.

OBJECTIVE To elucidate the roles of protein kinase in regulating the intraocular pressure (IOP) and outflow facility in rabbit eyes. METHODS A protein kinase inhibitor, 1-(5-isoquinolinesulfonyl)-homopiperazine (HA1077), was used. The IOP and the outflow facility were measured before and after topical, intracameral, or intravitreal administration of HA1077 in rabbits. Western blot analysis was performed to detect the 20-kd light chain of myosin in human trabecular meshwork (TM) cells and bovine ciliary muscle (CM) tissues. The cell morphologic condition and distribution of actin filaments and vinculin in TM cells were studied using cell biology techniques. Carbachol-induced contraction of isolated bovine CM strips following administration of HA1077 was examined in a perfusion chamber. RESULTS In rabbit eyes, the administration of HA1077 resulted in a significant decrease in IOP in a dose-dependent manner. An increased outflow facility was also observed. Western blot analysis revealed the presence of 20-kd light chain of myosin in human TM cells and bovine CM tissues. In cultured human TM cells, exposure to HA1077 disrupted actin bundles and impaired focal adhesion formation. In addition HA1077 showed relaxation of bovine CM strips. CONCLUSIONS Use of HA1077 caused a reduction in IOP and an increase in the outflow facility. The results of in vitro experiments suggest that the IOP-lowering effects of HA1077 may be related to the altered cellular behavior of TM cells and relaxation of CM contraction. The results of these studies suggested that protein kinase inhibitors have the potential to be developed into a treatment modality for glaucoma.

UI MeSH Term Description Entries
D007429 Intraocular Pressure The pressure of the fluids in the eye. Ocular Tension,Intraocular Pressures,Ocular Tensions,Pressure, Intraocular,Pressures, Intraocular,Tension, Ocular,Tensions, Ocular
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D009883 Ophthalmic Solutions Sterile solutions that are intended for instillation into the eye. It does not include solutions for cleaning eyeglasses or CONTACT LENS SOLUTIONS. Eye Drop,Eyedrop,Eyedrops,Ophthalmic Solution,Eye Drops,Drop, Eye,Drops, Eye,Solution, Ophthalmic,Solutions, Ophthalmic
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002924 Ciliary Body A ring of tissue extending from the scleral spur to the ora serrata of the RETINA. It consists of the uveal portion and the epithelial portion. The ciliary muscle is in the uveal portion and the ciliary processes are in the epithelial portion. Corpus Ciliare,Corpus Ciliaris,Bodies, Ciliary,Body, Ciliary,Ciliare, Corpus,Ciliares, Corpus,Ciliari, Corpus,Ciliaris, Corpus,Ciliary Bodies,Corpus Ciliares,Corpus Ciliari
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices

Related Publications

M Honjo, and M Inatani, and N Kido, and T Sawamura, and B Y Yue, and Y Honda, and H Tanihara
January 2008, Investigative ophthalmology & visual science,
M Honjo, and M Inatani, and N Kido, and T Sawamura, and B Y Yue, and Y Honda, and H Tanihara
January 1994, Experimental eye research,
M Honjo, and M Inatani, and N Kido, and T Sawamura, and B Y Yue, and Y Honda, and H Tanihara
March 2014, Investigative ophthalmology & visual science,
M Honjo, and M Inatani, and N Kido, and T Sawamura, and B Y Yue, and Y Honda, and H Tanihara
December 1980, Investigative ophthalmology & visual science,
M Honjo, and M Inatani, and N Kido, and T Sawamura, and B Y Yue, and Y Honda, and H Tanihara
May 1976, Investigative ophthalmology,
M Honjo, and M Inatani, and N Kido, and T Sawamura, and B Y Yue, and Y Honda, and H Tanihara
July 2020, Investigative ophthalmology & visual science,
M Honjo, and M Inatani, and N Kido, and T Sawamura, and B Y Yue, and Y Honda, and H Tanihara
July 1960, Archives of ophthalmology (Chicago, Ill. : 1960),
M Honjo, and M Inatani, and N Kido, and T Sawamura, and B Y Yue, and Y Honda, and H Tanihara
March 2014, Investigative ophthalmology & visual science,
M Honjo, and M Inatani, and N Kido, and T Sawamura, and B Y Yue, and Y Honda, and H Tanihara
March 1991, European journal of pharmacology,
M Honjo, and M Inatani, and N Kido, and T Sawamura, and B Y Yue, and Y Honda, and H Tanihara
July 1971, Experimental eye research,
Copied contents to your clipboard!