Monte Carlo (MC) methods applied in dose calculation are based on fundamental principles of radiation interaction with matter. In contrast to other methods, the accuracy of dose calculation achievable with MC depends only on the determination of the beam quality and the interaction coefficients. Using MC techniques it is possible to predict the dose for clinical photon and electron beams with an accuracy of > +/- 2%. Especially for inhomogeneous regions like head, neck, and lung, the MC technique can significantly improve the accuracy compared to conventional algorithms. Therefore, in the present paper the basic features of the MC method are reviewed in the context of treatment planning in radiation therapy. The main shortcoming in the past, i.e., that MC algorithms are too slow to be acceptable for clinical purposes, could be solved by using faster computers and by introducing new variance reduction (VR) techniques. These techniques decrease the statistical fluctuations without increasing the number of particle histories. Therefore, MC calculation times in the order of a few minutes are possible. A brief overview of VR methods is provided.