Role of striatal acetylcholine on dopamine D1 receptor agonist-induced turning behavior in 6-hydroxydopamine lesioned rats: a microdialysis-behavioral study. 2001

S Fenu, and E Acquas, and G Di Chiara
Department of Toxicology, University of Cagliari, Italy.

The effects of MK-801, a non-competitive N-methyl D-aspartate (NMDA) receptor antagonist, of quinpirole, a dopamine (DA) D2 receptor agonist, and of SCH 58261, an A2A adenosine antagonist, were studied on acetylcholine (ACh) release in the striatum of 6-hydroxydopamine (60HDA) lesioned rats and on turning behavior induced by the administration of the DA D1 agonist CY 208-243. Administration of CY 208-243 to 6OHDA lesioned rats induced turning behavior and dose-dependently stimulated ACh release. At the dose of 50 microg/kg, MK-801 failed to affect basal ACh, while at 100 microg/kg MK-801 reduced it; however, MK-801 (50 and 100 microg/kg) potentiated the turning behavior elicited by CY 208-243, but failed to affect the CY 208-243-induced increase of striatal ACh release. The administration of quinpirole induced low-intensity turning behavior and decreased basal ACh release; on the other hand, quinpirole potentiated the turning behavior induced by CY 208-243, but failed to affect the CY 208-243-elicited increase of ACh release. Finally, intravenous administration of SCH 58261 stimulated basal ACh release but not turning behavior; SCH 58261, however, potentiated turning behavior induced by CY 208-243, while failing to affect the D1-elicited increase of ACh release. These results indicate that potentiation of D1-dependent turning behavior by MK-801, quinpirole and SCH 58261 is not mediated by a reduced ability of D1-agonists to stimulate ACh release from the denervated striatum.

UI MeSH Term Description Entries
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D013565 Sympatholytics Drugs that inhibit the actions of the sympathetic nervous system by any mechanism. The most common of these are the ADRENERGIC ANTAGONISTS and drugs that deplete norepinephrine or reduce the release of transmitters from adrenergic postganglionic terminals (see ADRENERGIC AGENTS). Drugs that act in the central nervous system to reduce sympathetic activity (e.g., centrally acting alpha-2 adrenergic agonists, see ADRENERGIC ALPHA-AGONISTS) are included here. Sympathetic-Blocking Agents,Sympatholytic,Sympatholytic Agent,Sympatholytic Drug,Sympatholytic Agents,Sympatholytic Drugs,Sympatholytic Effect,Sympatholytic Effects,Agent, Sympatholytic,Agents, Sympathetic-Blocking,Agents, Sympatholytic,Drug, Sympatholytic,Drugs, Sympatholytic,Effect, Sympatholytic,Effects, Sympatholytic,Sympathetic Blocking Agents
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D016627 Oxidopamine A neurotransmitter analogue that depletes noradrenergic stores in nerve endings and induces a reduction of dopamine levels in the brain. Its mechanism of action is related to the production of cytolytic free-radicals. 6-Hydroxydopamine,6-OHDA,Oxidopamine Hydrobromide,Oxidopamine Hydrochloride,6 Hydroxydopamine,Hydrobromide, Oxidopamine,Hydrochloride, Oxidopamine

Related Publications

S Fenu, and E Acquas, and G Di Chiara
August 2000, Neuroscience letters,
S Fenu, and E Acquas, and G Di Chiara
February 1992, Brain research,
S Fenu, and E Acquas, and G Di Chiara
May 2009, Neurotoxicity research,
S Fenu, and E Acquas, and G Di Chiara
January 2010, Pharmacology, biochemistry, and behavior,
S Fenu, and E Acquas, and G Di Chiara
January 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!