A variable critical-volume model for normal tissue complication probability. 2001

D V Bonta, and E Fontenla, and Y Lu, and G T Chen
Department of Radiation and Cellular Oncology, University of Chicago, Illinois 60637, USA. d-bonta@uchicago.edu

Predicting late-term normal-tissue complication probability (NTCP) after radiotherapy is an important factor in the optimization of conformal radiotherapy. We propose a new NTCP model, based on the properties of the high dose region. The principal assumption of the new model is that a whole-organ complication will occur when the radiation damage to a normal organ volume (a portion of the total organ) exceeds a threshold value. The dose threshold for complications varies with the size of the volume (percent of the total organ). We hypothesize that a complication occurs if the complication threshold is exceeded for any organ volume. We used the average dose to a volume as a measure of radiation damage to that volume. Also, we used the power law to scale the average dose to various organ volumes to a whole-organ equivalent dose, and to identify the volume with the most harmful dose-size combination-the critical volume. We used a logistic distribution to calculate the probability that the patient will develop a complication, given the dose delivered to the critical volume. We used a maximum likelihood fit to estimate the model parameters for late-term rectal complications in a set of patients treated for prostate carcinoma with external photon beam radiotherapy (EBRT). Good correspondence was found between the experimental data and the model predictions.

UI MeSH Term Description Entries
D008297 Male Males
D011471 Prostatic Neoplasms Tumors or cancer of the PROSTATE. Cancer of Prostate,Prostate Cancer,Cancer of the Prostate,Neoplasms, Prostate,Neoplasms, Prostatic,Prostate Neoplasms,Prostatic Cancer,Cancer, Prostate,Cancer, Prostatic,Cancers, Prostate,Cancers, Prostatic,Neoplasm, Prostate,Neoplasm, Prostatic,Prostate Cancers,Prostate Neoplasm,Prostatic Cancers,Prostatic Neoplasm
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model
D016013 Likelihood Functions Functions constructed from a statistical model and a set of observed data which give the probability of that data for various values of the unknown model parameters. Those parameter values that maximize the probability are the maximum likelihood estimates of the parameters. Likelihood Ratio Test,Maximum Likelihood Estimates,Estimate, Maximum Likelihood,Estimates, Maximum Likelihood,Function, Likelihood,Functions, Likelihood,Likelihood Function,Maximum Likelihood Estimate,Test, Likelihood Ratio
D016015 Logistic Models Statistical models which describe the relationship between a qualitative dependent variable (that is, one which can take only certain discrete values, such as the presence or absence of a disease) and an independent variable. A common application is in epidemiology for estimating an individual's risk (probability of a disease) as a function of a given risk factor. Logistic Regression,Logit Models,Models, Logistic,Logistic Model,Logistic Regressions,Logit Model,Model, Logistic,Model, Logit,Models, Logit,Regression, Logistic,Regressions, Logistic
D017785 Photons Discrete concentrations of energy, apparently massless elementary particles, that move at the speed of light. They are the unit or quantum of electromagnetic radiation. Photons are emitted when electrons move from one energy state to another. (From Hawley's Condensed Chemical Dictionary, 11th ed)
D020266 Radiotherapy, Conformal A therapy using IONIZING RADIATION where there is improved dose homogeneity within the tumor and reduced dosage to uninvolved structures. The precise shaping of dose distribution is achieved via the use of computer-controlled multileaf collimators. Conformal Radiotherapy,3-D Conformal Radiotherapy,Three-Dimensional Conformal Radiotherapy,3-D Conformal Radiotherapies,Conformal Radiotherapies,Conformal Radiotherapies, 3-D,Conformal Radiotherapies, Three-Dimensional,Conformal Radiotherapy, 3-D,Conformal Radiotherapy, Three-Dimensional,Radiotherapies, 3-D Conformal,Radiotherapies, Conformal,Radiotherapies, Three-Dimensional Conformal,Radiotherapy, 3-D Conformal,Radiotherapy, Three-Dimensional Conformal,Three Dimensional Conformal Radiotherapy,Three-Dimensional Conformal Radiotherapies

Related Publications

D V Bonta, and E Fontenla, and Y Lu, and G T Chen
March 1991, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
D V Bonta, and E Fontenla, and Y Lu, and G T Chen
December 2017, Mathematical medicine and biology : a journal of the IMA,
D V Bonta, and E Fontenla, and Y Lu, and G T Chen
January 2003, Medical dosimetry : official journal of the American Association of Medical Dosimetrists,
D V Bonta, and E Fontenla, and Y Lu, and G T Chen
January 2000, Acta oncologica (Stockholm, Sweden),
D V Bonta, and E Fontenla, and Y Lu, and G T Chen
March 2019, Translational cancer research,
D V Bonta, and E Fontenla, and Y Lu, and G T Chen
June 1989, International journal of radiation oncology, biology, physics,
D V Bonta, and E Fontenla, and Y Lu, and G T Chen
January 2006, Acta oncologica (Stockholm, Sweden),
D V Bonta, and E Fontenla, and Y Lu, and G T Chen
March 2023, International journal of radiation oncology, biology, physics,
D V Bonta, and E Fontenla, and Y Lu, and G T Chen
June 2019, Seminars in oncology,
D V Bonta, and E Fontenla, and Y Lu, and G T Chen
September 2012, International journal of radiation oncology, biology, physics,
Copied contents to your clipboard!