High-affinity DNA binding of HU protein from the hyperthermophile Thermotoga maritima. 2001

A Grove, and L Lim
Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. agrove@lsu.edu

Prokaryotic genomes are compacted by association with small basic proteins, generating what has been termed bacterial chromatin. The ubiquitous DNA-binding protein HU serves this function. DNA-binding properties of HU from the hyperthermophilic eubacterium Thermotoga maritima are shown here to differ significantly from those characteristic of previously described HU homologs. Electrophoretic mobility shift analyses show that T. maritima HU (TmHU) binds double-stranded DNA with high affinity (K(d)=5.6(+/-0.7) nM for 37 bp DNA). Equivalent affinity is observed between 4 degrees C and 45 degrees C. TmHU has higher affinity for DNA containing a set of 4 nt loops separated by 9 bp (K(d)=1.4(+/-0.3) nM), consistent with its introduction of two DNA kinks. Using DNA probes of varying length, the optimal binding site for TmHU is estimated at 37 bp, in sharp contrast to the 9-10 bp binding site reported for other HU homologs. Alignment of >60 HU sequences demonstrates significant sequence conservation: A DNA-intercalating proline residue is almost universally conserved, and it is preceded by arginine and asparagine in most sequences, generating a highly conserved RNP motif; V substitutes for R only in HU from Thermotoga, Thermus and Deinococcus. A fivefold increase in DNA-binding affinity is observed for TmHU in which V is replaced with R (TmHU-V61R; K(d)=1.1(+/-0.2) nM), but a change in the trajectory of DNA flanking the sites of DNA intercalation is inferred from analysis of TmHU-V61R binding to DNA modified with 4 nt loops or with substitutions of 5-hydroxymethyluracil for thymine. Survival in extreme environments places unique demands on protection of genomic DNA from thermal destabilization and on access of DNA to the cellular machinery, demands that may be fulfilled by the specific DNA-binding properties of HU and by the fine structure of the bacterial chromatin.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010432 Pentoxyl 5-Hydroxymethyl-6-methyl- 2,4-(1H,3H)-pyrimidinedione. Uracil derivative used in combination with toxic antibiotics to lessen their toxicity; also to stimulate leukopoiesis and immunity. Synonyms: pentoksil; hydroxymethylmethyluracil.
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

A Grove, and L Lim
January 2001, Methods in enzymology,
Copied contents to your clipboard!