TROSY NMR with partially deuterated proteins. 2001

A Eletsky, and A Kienhöfer, and K Pervushin
Laboratorium für Physikalische Chemie, Eidgenossische Technische Hochschule Hönggerberg, Zürich, Switzerland.

TROSY-type optimization of liquid-state NMR experiments is based on the preservation of unique coherence transfer pathways with distinct transverse relaxation properties. The broadband decoupling of the 1H spins interchanges the TROSY and anti-TROSY magnetization transfer pathways and thus is not used in TROSY-type triple resonance experiments or is replaced with narrowband selective decoupling. To achieve the full advantage of TROSY, the uniform deuteration of proteins is usually required. Here we propose a new and general method for 1H broadband decoupling in TROSY NMR, which does not compromise the relaxation optimization in the 15N-1H moieties, but uniformly and efficiently refocuses the 1JCH scalar coupling evolution in the 13C-1H moieties. Combined with the conventional 2H decoupling, this method enables obtaining high sensitivity TROSY-type triple resonance spectra with partially deuterated or fully protonated 13C,15N labeled proteins.

UI MeSH Term Description Entries
D009587 Nitrogen Isotopes Stable nitrogen atoms that have the same atomic number as the element nitrogen but differ in atomic weight. N-15 is a stable nitrogen isotope. Nitrogen Isotope,Isotope, Nitrogen,Isotopes, Nitrogen
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002826 Chorismate Mutase An isomerase that catalyzes the conversion of chorismic acid to prephenic acid. EC 5.4.99.5. Chorismate Pyruvatemutase,Mutase, Chorismate,Pyruvatemutase, Chorismate
D003903 Deuterium The stable isotope of hydrogen. It has one neutron and one proton in the nucleus. Deuterons,Hydrogen-2,Hydrogen 2
D006859 Hydrogen The first chemical element in the periodic table with atomic symbol H, and atomic number 1. Protium (atomic weight 1) is by far the most common hydrogen isotope. Hydrogen also exists as the stable isotope DEUTERIUM (atomic weight 2) and the radioactive isotope TRITIUM (atomic weight 3). Hydrogen forms into a diatomic molecule at room temperature and appears as a highly flammable colorless and odorless gas. Protium,Hydrogen-1
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D016880 Anisotropy A physical property showing different values in relation to the direction in or along which the measurement is made. The physical property may be with regard to thermal or electric conductivity or light refraction. In crystallography, it describes crystals whose index of refraction varies with the direction of the incident light. It is also called acolotropy and colotropy. The opposite of anisotropy is isotropy wherein the same values characterize the object when measured along axes in all directions. Anisotropies
D019906 Nuclear Magnetic Resonance, Biomolecular NMR spectroscopy on small- to medium-size biological macromolecules. This is often used for structural investigation of proteins and nucleic acids, and often involves more than one isotope. Biomolecular Nuclear Magnetic Resonance,Heteronuclear Nuclear Magnetic Resonance,NMR Spectroscopy, Protein,NMR, Biomolecular,NMR, Heteronuclear,NMR, Multinuclear,Nuclear Magnetic Resonance, Heteronuclear,Protein NMR Spectroscopy,Biomolecular NMR,Heteronuclear NMR,Multinuclear NMR,NMR Spectroscopies, Protein,Protein NMR Spectroscopies,Spectroscopies, Protein NMR,Spectroscopy, Protein NMR

Related Publications

A Eletsky, and A Kienhöfer, and K Pervushin
January 2013, Topics in current chemistry,
A Eletsky, and A Kienhöfer, and K Pervushin
December 2014, Journal of labelled compounds & radiopharmaceuticals,
A Eletsky, and A Kienhöfer, and K Pervushin
August 1998, Solid state nuclear magnetic resonance,
A Eletsky, and A Kienhöfer, and K Pervushin
January 1994, Physical review. B, Condensed matter,
A Eletsky, and A Kienhöfer, and K Pervushin
February 2019, Journal of biomolecular NMR,
A Eletsky, and A Kienhöfer, and K Pervushin
April 2018, Journal of biomolecular NMR,
A Eletsky, and A Kienhöfer, and K Pervushin
December 2006, Journal of biomolecular NMR,
A Eletsky, and A Kienhöfer, and K Pervushin
January 2004, Methods in molecular biology (Clifton, N.J.),
A Eletsky, and A Kienhöfer, and K Pervushin
January 2005, Methods in enzymology,
Copied contents to your clipboard!