Shape diversity among chick retina Müller cells and their postnatal differentiation. 2001

L Anezary, and J I Medina, and J Sánchez-Nogueiro, and M López-Gallardo, and C Prada
Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.

It is currently believed that in each vertebrate species Müller cells in the central retina constitutes a fairly homogeneous population from the morphologic point of view and that particularly the chick Müller cell attains full shape differentiation at prenatal stages. However, in this study of the chick retina, from day 1 to day 55 of life, we show that there is a large variety of Müller cell shapes and that many of them complete shape differentiation postnatally. We used a cell dissociation method that preserves the whole shape of the Müller cells. Unstained living and unstained fixed cells were studied by phase-contrast microscopy, and fixed cells immunostained for intermediate filaments of the cytoskeleton were studied by fluorescence microscopy. Our results show that (1) Müller cell shapes vary in the origination of the hair of vitread processes, in the shape of the ventricular (outer or apical) process, in the presence or absence of an accessory process, as well as in the number and shape of processes leaving from the ventricular process at the level of the outer nuclear and outer plexiform layers (ONL/OPL); (2) during the first month of life, many Müller cells differentiate the portion of the ventricular process that traverses the ONL, most Müller cells differentiate the ONL/OPL processes, and all Müller cells differentiate the thin short lateral processes leaving from the vitread hair processes at the level of the inner plexiform layer (IPL). The number of cells differing in the shape of the ventricular process and that of cells with and without accessory process were estimated. The spatial relationship between the outer portion of the ventricular process of the Müller cell and the photoreceptor cells was also studied. Our results show that the branching of the ventricular process and the refinement of Müller cell shape is achieved without apparent participation of growth cones. We give a schematic view of how the branching of the ventricular process might take place and propose the size increase of photoreceptor soma as a factor responsible for this branching.

UI MeSH Term Description Entries
D008858 Microscopy, Phase-Contrast A form of interference microscopy in which variations of the refracting index in the object are converted into variations of intensity in the image. This is achieved by the action of a phase plate. Phase-Contrast Microscopy,Microscopies, Phase-Contrast,Microscopy, Phase Contrast,Phase Contrast Microscopy,Phase-Contrast Microscopies
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging

Related Publications

L Anezary, and J I Medina, and J Sánchez-Nogueiro, and M López-Gallardo, and C Prada
March 1992, Journal of neuroscience research,
L Anezary, and J I Medina, and J Sánchez-Nogueiro, and M López-Gallardo, and C Prada
April 1998, Histology and histopathology,
L Anezary, and J I Medina, and J Sánchez-Nogueiro, and M López-Gallardo, and C Prada
December 2001, Investigative ophthalmology & visual science,
L Anezary, and J I Medina, and J Sánchez-Nogueiro, and M López-Gallardo, and C Prada
November 1986, Neuroscience letters,
L Anezary, and J I Medina, and J Sánchez-Nogueiro, and M López-Gallardo, and C Prada
July 1989, Journal of morphology,
L Anezary, and J I Medina, and J Sánchez-Nogueiro, and M López-Gallardo, and C Prada
November 2009, Glia,
L Anezary, and J I Medina, and J Sánchez-Nogueiro, and M López-Gallardo, and C Prada
March 1993, Experimental eye research,
L Anezary, and J I Medina, and J Sánchez-Nogueiro, and M López-Gallardo, and C Prada
March 1991, The Journal of comparative neurology,
L Anezary, and J I Medina, and J Sánchez-Nogueiro, and M López-Gallardo, and C Prada
July 1989, Histology and histopathology,
L Anezary, and J I Medina, and J Sánchez-Nogueiro, and M López-Gallardo, and C Prada
August 1999, The European journal of neuroscience,
Copied contents to your clipboard!