Cytochrome P450 in the brain; a review. 2001

E Hedlund, and J A Gustafsson, and M Warner
Department of Medical Nutrition, Huddinge University Hospital, Novum, Sweden. ehedlund@mednet.ucla.edu

After many frustrating decades of unsuccessful attempts to characterize the isoforms of P450 in the brain, several scientific breakthroughs in the 80s and 90s have resulted in major advances in our understanding of cytochromes P450 (CYP) in brain. We now know that classical CYP inducers, e.g. phenobarbital and pregnenolone 16alpha-carbonitrile, which regulate drug-metabolizing enzymes in the liver, are specific ligands for ligand-activated transcription factors, and that the brain content of many of these transcription factors is low. This explains why these inducers have little effect on brain CYP content. The most effective inducers of brain P450 are some of the CNS active drugs and solvents. The level of CYPs in brain, approximately 0.5-2% of that in liver, is too low to significantly influence the overall pharmacokinetics of drugs and hormones in the body. Instead CYPs appear to have specific functions in brain, e.g. regulation of the levels of endogenous GABAA receptor agonists maintenance of brain cholesterol homeostasis and elimination of retinoids The novel CYPs which catalyse these reactions have recently been characterized. They are abundantly expressed in the brain confirming what has been previously found, i.e. that the major hepatic, adrenal and gonadal CYP isozymes contribute very little to the overall content of CYP in brain. It is not clear what fraction of brain CYP has been characterized, although a complete characterization of constitutive and induced CYPs in brain is essential for understanding the role of these enzymes in brain physiology as well as in age-related and xenobiotic-induced neurotoxicity.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic

Related Publications

E Hedlund, and J A Gustafsson, and M Warner
June 1996, Brain research. Brain research reviews,
E Hedlund, and J A Gustafsson, and M Warner
February 1996, Biochemical Society transactions,
E Hedlund, and J A Gustafsson, and M Warner
June 2005, Biosensors & bioelectronics,
E Hedlund, and J A Gustafsson, and M Warner
July 1995, Frontiers in neuroendocrinology,
E Hedlund, and J A Gustafsson, and M Warner
March 2006, The FEBS journal,
E Hedlund, and J A Gustafsson, and M Warner
December 1995, The Journal of biological chemistry,
E Hedlund, and J A Gustafsson, and M Warner
June 1995, Drug metabolism and disposition: the biological fate of chemicals,
E Hedlund, and J A Gustafsson, and M Warner
May 2013, Journal of psychiatry & neuroscience : JPN,
E Hedlund, and J A Gustafsson, and M Warner
February 2021, Drug metabolism reviews,
E Hedlund, and J A Gustafsson, and M Warner
September 1992, Biochemical pharmacology,
Copied contents to your clipboard!