Brain gangliosides: functional ligands for myelin stability and the control of nerve regeneration. 2001

A A Vyas, and R L Schnaar
Department of Pharmacology, The Johns Hopkins School of Medicine, 318 WBSB, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA.

Gangliosides, sialylated glycosphingolipids which are the predominant glycans on vertebrate nerve cell surfaces, are emerging as components of membrane rafts, where they can mediate important physiological functions. Myelin associated glycoprotein (MAG), a minor constituent of myelin, is a sialic acid binding lectin with two established physiological functions: it is involved in myelin-axon stability and cytoarchitecture, and controls nerve regeneration. MAG is found selectively on the myelin membranes directly apposed to the axon surface, where it has been proposed to mediate myelin-axon interactions. Although the nerve cell surface ligands for MAG remain to be established, evidence supports a functional role for sialylated glycoconjugates. Here we review recent studies that reflect on the role of gangliosides, sialylated glycosphingolipids, as functional MAG ligands. MAG binds to gangliosides with the terminal sequence 'NeuAc alpha 3Gal beta 3GalNAc' which is found on the major nerve gangliosides GD1a and GT1b. Gangliosides lacking that terminus (e.g., GM1 or GD1b), or having any biochemical modification of the terminal NeuAc residue fail to support MAG binding. Genetically engineered mice lacking the GalNAc transferase required for biosynthesis of the 'NeuAc alpha 3Gal beta 3GalNAc' terminus have grossly impaired myelination and progressive neurodegeneration. Notably the MAG level in these animals is dysregulated. Furthermore, removal of NeuAc residues from nerve cells reverses MAG-mediated inhibition of neuritogenesis, and neurons from mice lacking the 'NeuAc alpha 3 Gal beta 3GalNAc' terminus have an attenuated response to MAG. Cross-linking nerve cell surface gangliosides can mimic MAG-mediated inhibition of nerve regeneration. Taken together these observations implicate gangliosides as functional MAG ligands.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D005732 Gangliosides A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997) Ganglioside,Sialoglycosphingolipids
D000097763 Polypeptide N-acetylgalactosaminyltransferase Family of enzymes that catalyze the formation of GalNAcAlpha1-serine/threonine linkages in glycoproteins. Galactosylgalactosylglucosylceramide beta-D-acetylgalactosaminyltransferase,Globoside Synthase,Globoside beta GalNAc Transferase,Protein-UDPacetylgalactosaminyltransferase,(1-3)-N-acetyl-beta-galactosaminyltransferase,(1-4)-N-acetyl-beta-D-galactosaminyltransferase,4-GalNActransferase,GalNAc-T1,GalNAc-T10,GalNAc-T2,GalNAc-T3,GalNAc-T4,GalNAc-T5,GalNAc-T8,GalNAc-transferase,GalNAcT-1,GalNAcT-2,GalNAcT-4,GalNAcT-8,UDP-GPAGAT,UDP-GalNAc-beta-galactose beta 1,4-N-acetylgalactosaminyltransferase,UDP-GalNAc-polypeptide N-acetylgalactosaminyltransferase,UDP-N-acetyl-D-galactosamine polypeptide N-acetylgalactosaminyltransferase-T4,UDP-N-acetylgalactosamine mucin transferase,UDP-N-acetylgalactosamine-beta-galactose beta 1,4-N-acetylgalactosaminyltransferase,UDP-N-acetylgalactosamine-globoside beta-N-acetylgalactosaminyltransferase,UDP-N-acetylgalactosamine-globosidetriaosylceramide beta-3-N-acetylgalactosaminyltransferase,UDP-N-acetylgalactosamine-polypeptide N-acetylgalactosamine transferase,UDPacetylgalactosamine-galactosyl-galactosyl-glucosylceramide beta-N-acetyl-D-galactosaminyltransferase,UDPacetylgalactosamine-protein acetylgalactosaminyltransferase,beta-1,4-N-acetylgalactosaminyltransferase,beta-N-acetylgalactosaminyltransferase,beta1,6N-acetylgalactosaminyltransferase,polypeptide N-acetylgalactosaminyltransferase 1,polypeptide N-acetylgalactosaminyltransferase 10,polypeptide N-acetylgalactosaminyltransferase 2,polypeptide N-acetylgalactosaminyltransferase 3,polypeptide N-acetylgalactosaminyltransferase 4,polypeptide N-acetylgalactosaminyltransferase 5,polypeptide N-acetylgalactosaminyltransferase 8,pp-GalNAc-T10,ppGalNAc-T,Synthase, Globoside
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012794 Sialic Acids A group of naturally occurring N-and O-acyl derivatives of the deoxyamino sugar neuraminic acid. They are ubiquitously distributed in many tissues. N-Acetylneuraminic Acids,Acids, N-Acetylneuraminic,Acids, Sialic,N Acetylneuraminic Acids

Related Publications

A A Vyas, and R L Schnaar
May 2010, FEBS letters,
A A Vyas, and R L Schnaar
January 1976, Journal of neurochemistry,
A A Vyas, and R L Schnaar
January 1996, Proceedings of the National Academy of Sciences of the United States of America,
A A Vyas, and R L Schnaar
January 2018, Progress in molecular biology and translational science,
A A Vyas, and R L Schnaar
September 1975, Journal of neurochemistry,
A A Vyas, and R L Schnaar
July 1973, Lipids,
A A Vyas, and R L Schnaar
January 1976, Advances in experimental medicine and biology,
A A Vyas, and R L Schnaar
December 1982, Brain research,
A A Vyas, and R L Schnaar
January 1961, International review of cytology,
A A Vyas, and R L Schnaar
February 1980, The Japanese journal of experimental medicine,
Copied contents to your clipboard!