Prediction of rho-independent transcriptional terminators in Escherichia coli. 2001

E A Lesnik, and R Sampath, and H B Levene, and T J Henderson, and J A McNeil, and D J Ecker
IBIS Therapeutics, 2292 Faraday Avenue, Carlsbad, CA 92008, USA.

A new algorithm called RNAMotif containing RNA structure and sequence constraints and a thermodynamic scoring system was used to search for intrinsic rho-independent terminators in the Escherichia coli K-12 genome. We identified all 135 reported terminators and 940 putative terminator sequences beginning no more than 60 nt away from the 3'-end of the annotated transcription units (TU). Putative and reported terminators with the scores above our chosen threshold were found for 37 of the 53 non-coding RNA TU and for almost 50% of the 2592 annotated protein-encoding TU, which correlates well with the number of TU expected to contain rho-independent terminators. We also identified 439 terminators that could function in a bi-directional fashion, servicing one gene on the positive strand and a different gene on the negative strand. Approximately 700 additional termination signals in non-coding regions (NCR) far away from the nearest annotated gene were predicted. This number correlates well with the excess number of predicted 'orphan' promoters in the NCR, and these promoters and terminators may be associated with as yet unidentified TU. The significant number of high scoring hits that occurred within the reading frame of annotated genes suggests that either an additional component of rho-independent terminators exists or that a suppressive mechanism to prevent unwanted termination remains to be discovered.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012234 Rho Factor A protein which effects termination of RNA synthesis during the genetic transcription process by dissociating the ternary transcription complex RNA;-RNA POLYMERASE DNA at the termination of a gene. E Coli Transcription Termination Factor,Factor, Rho
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

E A Lesnik, and R Sampath, and H B Levene, and T J Henderson, and J A McNeil, and D J Ecker
December 1990, Journal of molecular biology,
E A Lesnik, and R Sampath, and H B Levene, and T J Henderson, and J A McNeil, and D J Ecker
July 1988, Journal of molecular biology,
E A Lesnik, and R Sampath, and H B Levene, and T J Henderson, and J A McNeil, and D J Ecker
December 2006, FEBS letters,
E A Lesnik, and R Sampath, and H B Levene, and T J Henderson, and J A McNeil, and D J Ecker
August 2016, Molecular microbiology,
E A Lesnik, and R Sampath, and H B Levene, and T J Henderson, and J A McNeil, and D J Ecker
March 1992, Journal of molecular biology,
E A Lesnik, and R Sampath, and H B Levene, and T J Henderson, and J A McNeil, and D J Ecker
December 1997, Proceedings of the National Academy of Sciences of the United States of America,
E A Lesnik, and R Sampath, and H B Levene, and T J Henderson, and J A McNeil, and D J Ecker
January 2011, RNA biology,
E A Lesnik, and R Sampath, and H B Levene, and T J Henderson, and J A McNeil, and D J Ecker
February 2008, Nucleic acids research,
E A Lesnik, and R Sampath, and H B Levene, and T J Henderson, and J A McNeil, and D J Ecker
May 1990, Journal of molecular biology,
E A Lesnik, and R Sampath, and H B Levene, and T J Henderson, and J A McNeil, and D J Ecker
January 1987, Gene,
Copied contents to your clipboard!