Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. 2001

X Zhao, and K Drlica
Public Health Research Institute, New York, NY 10016, USA.

Studies with fluoroquinolones have led to a general method for restricting the selection of antibiotic-resistant mutants. The strategy is based on the use of antibiotic concentrations that require cells to obtain 2 concurrent resistance mutations for growth. That concentration has been called the "mutant prevention concentration" (MPC) because no resistant colony is recovered even when >10(10) cells are plated. Resistant mutants are selected exclusively within a concentration range (mutant selection window) that extends from the point where growth inhibition begins, approximated by the minimal inhibitory concentration, up to the MPC. The dimensions of the mutant selection window can be reduced in a variety of ways, including adjustment of antibiotic structure and dosage regimens. The window can be closed to prevent mutant selection through combination therapy with > or =2 antimicrobial agents if their normalized pharmacokinetic profiles superimpose at concentrations that inhibit growth. Application of these principles could drastically restrict the selection of drug-resistant pathogens.

UI MeSH Term Description Entries
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004359 Drug Therapy, Combination Therapy with two or more separate preparations given for a combined effect. Combination Chemotherapy,Polychemotherapy,Chemotherapy, Combination,Combination Drug Therapy,Drug Polytherapy,Therapy, Combination Drug,Chemotherapies, Combination,Combination Chemotherapies,Combination Drug Therapies,Drug Polytherapies,Drug Therapies, Combination,Polychemotherapies,Polytherapies, Drug,Polytherapy, Drug,Therapies, Combination Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000890 Anti-Infective Agents Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection. Anti-Infective Agent,Anti-Microbial Agent,Antimicrobial Agent,Microbicide,Microbicides,Anti-Microbial Agents,Antiinfective Agents,Antimicrobial Agents,Agent, Anti-Infective,Agent, Anti-Microbial,Agent, Antimicrobial,Agents, Anti-Infective,Agents, Anti-Microbial,Agents, Antiinfective,Agents, Antimicrobial,Anti Infective Agent,Anti Infective Agents,Anti Microbial Agent,Anti Microbial Agents
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses
D024841 Fluoroquinolones A group of QUINOLONES with at least one fluorine atom and a piperazinyl group. Fluoroquinolone
D024881 Drug Resistance, Bacterial The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance, Bacterial,Antibacterial Drug Resistance
D024901 Drug Resistance, Multiple, Bacterial The ability of bacteria to resist or to become tolerant to several structurally and functionally distinct drugs simultaneously. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Drug Resistance, Extensive, Bacterial,Drug Resistance, Extensively, Bacterial,Extensive Antibacterial Drug Resistance,Extensively Antibacterial Drug Resistance,Multidrug Resistance, Bacterial,Multiple Antibacterial Drug Resistance,Bacterial Multidrug Resistance,Bacterial Multidrug Resistances,Resistance, Bacterial Multidrug

Related Publications

X Zhao, and K Drlica
January 2002, Microbial drug resistance (Larchmont, N.Y.),
X Zhao, and K Drlica
March 2008, Antimicrobial agents and chemotherapy,
X Zhao, and K Drlica
June 1966, Journal of bacteriology,
X Zhao, and K Drlica
January 2005, Proceedings of the National Academy of Sciences of the United States of America,
X Zhao, and K Drlica
March 1985, Proceedings of the National Academy of Sciences of the United States of America,
X Zhao, and K Drlica
September 2009, International journal of antimicrobial agents,
X Zhao, and K Drlica
January 1990, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!