Enzymatic modification of kraft lignin through oxidative coupling with water-soluble phenols. 2001

M Lund, and A J Ragauskas
Chemistry Department, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark. malu@kvl.dk

The aromatic polymer lignin can be modified through promotion of oxidative coupling between phenolic groups on lignin and various phenols. The reaction is initiated by an oxidation of both components, e.g., by using the oxidoreductases laccase or peroxidase. Coupling between phenolic monomers and lignin has previously been studied by the use of radio-labeled phenols. In this study, incorporation of water-soluble phenols into kraft lignin, using laccase as catalyst, was investigated. Several phenols with carboxylic or sulfonic acid groups were used as markers for the incorporation. The modified lignin was isolated and the amount of phenol incorporated was characterized by means of titration, quantitative 1H-NMR, and quantitative 31P-NMR after modification with 2-chloro-4,4,5,5-tetramethyl-1,2,3-dioxaphospholane. Only a few of the phenols studied were found to be incorporated into lignin. When the phenol guaiacol sulfonate was incorporated into kraft lignin, the lignin became water-soluble at pH 2.4 and a low ionic strength due to the introduction of sulfonic acid groups. The content of sulfonic acid groups in the product was 0.5-0.6 mmol/g lignin. A lower amount of 4-hydroxyphenylacetic acid was incorporated under similar conditions.

UI MeSH Term Description Entries
D008031 Lignin The most abundant natural aromatic organic polymer found in all vascular plants. Lignin together with cellulose and hemicellulose are the major cell wall components of the fibers of all wood and grass species. Lignin is composed of coniferyl, p-coumaryl, and sinapyl alcohols in varying ratios in different plant species. (From Merck Index, 11th ed) Lignins
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010544 Peroxidases Ovoperoxidase
D010636 Phenols Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
D010648 Phenylacetates Derivatives of phenylacetic acid. Included under this heading are a variety of acid forms, salts, esters, and amides that contain the benzeneacetic acid structure. Note that this class of compounds should not be confused with derivatives of phenyl acetate, which contain the PHENOL ester of ACETIC ACID. Benzeneacetates,Benzeneacetic Acids,Phenylacetic Acids,Acids, Benzeneacetic,Acids, Phenylacetic
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

M Lund, and A J Ragauskas
October 2019, ChemistryOpen,
M Lund, and A J Ragauskas
April 2019, Bioresource technology,
M Lund, and A J Ragauskas
March 2024, Langmuir : the ACS journal of surfaces and colloids,
M Lund, and A J Ragauskas
September 2015, Molecules (Basel, Switzerland),
Copied contents to your clipboard!