In vivo recombination as a tool to generate molecular diversity in phage antibody libraries. 2001

D Sblattero, and J Lou, and R Marzari, and A Bradbury
Dipartimento di Biologia, Universita' di Trieste, Italy.

The creation of diversity in populations of polypeptides has become an important tool in the derivation of polypeptides with useful characteristics. This requires efficient methods to create diversity coupled with methods to select polypeptides with desired properties. In this review we describe the use of in vivo recombination as a powerful way to generate diversity. The novel principles for the recombination process and several applications of this process for the creation of phage antibody libraries are described. The advantage and disadvantages are discussed and possible future exploitation presented.

UI MeSH Term Description Entries
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D001709 Biotechnology Body of knowledge related to the use of organisms, cells or cell-derived constituents for the purpose of developing products which are technically, scientifically and clinically useful. Alteration of biologic function at the molecular level (i.e., GENETIC ENGINEERING) is a central focus; laboratory methods used include TRANSFECTION and CLONING technologies, sequence and structure analysis algorithms, computer databases, and gene and protein structure function analysis and prediction. Biotechnologies
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D015202 Protein Engineering Procedures by which protein structure and function are changed or created in vitro by altering existing or synthesizing new structural genes that direct the synthesis of proteins with sought-after properties. Such procedures may include the design of MOLECULAR MODELS of proteins using COMPUTER GRAPHICS or other molecular modeling techniques; site-specific mutagenesis (MUTAGENESIS, SITE-SPECIFIC) of existing genes; and DIRECTED MOLECULAR EVOLUTION techniques to create new genes. Genetic Engineering of Proteins,Genetic Engineering, Protein,Proteins, Genetic Engineering,Engineering, Protein,Engineering, Protein Genetic,Protein Genetic Engineering
D019151 Peptide Library A collection of cloned peptides, or chemically synthesized peptides, frequently consisting of all possible combinations of amino acids making up an n-amino acid peptide. Phage Display Peptide Library,Random Peptide Library,Peptide Phage Display Library,Phage Display Library, Peptide,Synthetic Peptide Combinatorial Library,Synthetic Peptide Library,Libraries, Peptide,Libraries, Random Peptide,Libraries, Synthetic Peptide,Library, Peptide,Library, Random Peptide,Library, Synthetic Peptide,Peptide Libraries,Peptide Libraries, Random,Peptide Libraries, Synthetic,Peptide Library, Random,Peptide Library, Synthetic,Random Peptide Libraries,Synthetic Peptide Libraries

Related Publications

D Sblattero, and J Lou, and R Marzari, and A Bradbury
January 2000, Nature biotechnology,
D Sblattero, and J Lou, and R Marzari, and A Bradbury
April 2012, Journal of drug targeting,
D Sblattero, and J Lou, and R Marzari, and A Bradbury
January 2012, International journal of molecular sciences,
D Sblattero, and J Lou, and R Marzari, and A Bradbury
January 1996, Methods in enzymology,
D Sblattero, and J Lou, and R Marzari, and A Bradbury
July 2004, Journal of immunological methods,
D Sblattero, and J Lou, and R Marzari, and A Bradbury
December 2013, Biotechnology advances,
D Sblattero, and J Lou, and R Marzari, and A Bradbury
August 1997, Current opinion in biotechnology,
D Sblattero, and J Lou, and R Marzari, and A Bradbury
January 1998, Methods in molecular medicine,
D Sblattero, and J Lou, and R Marzari, and A Bradbury
January 2009, Protein engineering, design & selection : PEDS,
D Sblattero, and J Lou, and R Marzari, and A Bradbury
February 2004, Nucleic acids research,
Copied contents to your clipboard!