Enhanced visual spatial attention ipsilateral to rTMS-induced 'virtual lesions' of human parietal cortex. 2001

C C Hilgetag, and H Théoret, and A Pascual-Leone
Boston University School of Medicine, Department of Anatomy and Neurobiology, 700 Albany Street W746, Boston, Massachusetts 02118, USA. claush@bu.edu

The breakdown of attentional mechanisms after brain damage can have drastic behavioral consequences, as in patients suffering from spatial neglect. While much research has concentrated on impaired attention to targets contralateral to sites of brain damage, here we report the ipsilateral enhancement of visual attention after repetitive transcranial magnetic stimulation (rTMS) of parietal cortex at parameters known to reduce cortical excitability. Normal healthy subjects received rTMS (1 Hz, 10 mins) over right or left parietal cortex. Subsequently, detection of visual stimuli contralateral to the stimulated hemisphere was consistently impaired when stimuli were also present in the opposite hemifield, mirroring the extinction phenomenon commonly observed in neglect patients. Additionally, subjects' attention to ipsilateral targets improved significantly over normal levels. These results underline the potential of focal brain dysfunction to produce behavioral improvement and give experimental support to models of interhemispheric competition in the distributed brain network for spatial attention.

UI MeSH Term Description Entries
D008280 Magnetics The study of MAGNETIC PHENOMENA. Magnetic
D008297 Male Males
D009462 Neurology A medical specialty concerned with the study of the structures, functions, and diseases of the nervous system.
D010296 Parietal Lobe Upper central part of the cerebral hemisphere. It is located posterior to central sulcus, anterior to the OCCIPITAL LOBE, and superior to the TEMPORAL LOBES. Brodmann Area 39,Brodmann Area 40,Brodmann Area 5,Brodmann Area 7,Brodmann's Area 39,Brodmann's Area 40,Brodmann's Area 5,Brodmann's Area 7,Inferior Parietal Cortex,Secondary Sensorimotor Cortex,Superior Parietal Lobule,Angular Gyrus,Gyrus Angularis,Gyrus Supramarginalis,Intraparietal Sulcus,Marginal Sulcus,Parietal Cortex,Parietal Lobule,Parietal Region,Posterior Paracentral Lobule,Posterior Parietal Cortex,Praecuneus,Precuneus,Precuneus Cortex,Prelunate Gyrus,Supramarginal Gyrus,Area 39, Brodmann,Area 39, Brodmann's,Area 40, Brodmann,Area 40, Brodmann's,Area 5, Brodmann,Area 5, Brodmann's,Area 7, Brodmann,Area 7, Brodmann's,Brodmanns Area 39,Brodmanns Area 40,Brodmanns Area 5,Brodmanns Area 7,Cortex, Inferior Parietal,Cortex, Parietal,Cortex, Posterior Parietal,Cortex, Precuneus,Cortex, Secondary Sensorimotor,Cortices, Inferior Parietal,Gyrus, Angular,Gyrus, Prelunate,Gyrus, Supramarginal,Inferior Parietal Cortices,Lobe, Parietal,Lobule, Parietal,Lobule, Posterior Paracentral,Lobule, Superior Parietal,Paracentral Lobule, Posterior,Paracentral Lobules, Posterior,Parietal Cortex, Inferior,Parietal Cortex, Posterior,Parietal Cortices,Parietal Cortices, Inferior,Parietal Cortices, Posterior,Parietal Lobes,Parietal Lobule, Superior,Parietal Lobules,Parietal Lobules, Superior,Parietal Regions,Posterior Paracentral Lobules,Posterior Parietal Cortices,Precuneus Cortices,Region, Parietal,Secondary Sensorimotor Cortices,Sensorimotor Cortex, Secondary,Superior Parietal Lobules
D010468 Perceptual Disorders Cognitive disorders characterized by an impaired ability to perceive the nature of objects or concepts through use of the sense organs. These include spatial neglect syndromes, where an individual does not attend to visual, auditory, or sensory stimuli presented from one side of the body. Hemispatial Neglect,Hemisensory Neglect,Sensory Neglect,Somatosensory Discrimination Disorder,Discrimination Disorder, Somatosensory,Discrimination Disorders, Somatosensory,Hemisensory Neglects,Hemispatial Neglects,Neglect, Hemisensory,Neglect, Hemispatial,Neglect, Sensory,Neglects, Hemisensory,Perceptual Disorder,Sensory Neglects,Somatosensory Discrimination Disorders
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D004292 Dominance, Cerebral Dominance of one cerebral hemisphere over the other in cerebral functions. Cerebral Dominance,Hemispheric Specialization,Dominances, Cerebral,Specialization, Hemispheric
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

C C Hilgetag, and H Théoret, and A Pascual-Leone
August 2005, Journal of neurophysiology,
C C Hilgetag, and H Théoret, and A Pascual-Leone
January 1989, Experimental brain research,
C C Hilgetag, and H Théoret, and A Pascual-Leone
January 2013, Frontiers in human neuroscience,
C C Hilgetag, and H Théoret, and A Pascual-Leone
October 2008, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C C Hilgetag, and H Théoret, and A Pascual-Leone
December 2009, Brain research,
C C Hilgetag, and H Théoret, and A Pascual-Leone
December 2009, Journal of vision,
C C Hilgetag, and H Théoret, and A Pascual-Leone
January 2017, Neuropsychologia,
C C Hilgetag, and H Théoret, and A Pascual-Leone
November 1995, Science (New York, N.Y.),
C C Hilgetag, and H Théoret, and A Pascual-Leone
February 2012, Cerebral cortex (New York, N.Y. : 1991),
C C Hilgetag, and H Théoret, and A Pascual-Leone
January 2007, Current biology : CB,
Copied contents to your clipboard!