Inhibitory zinc-enriched terminals in mouse spinal cord. 2001

G Danscher, and S M Jo, and E Varea, and Z Wang, and T B Cole, and H D Schrøder
Department of Neurobiology, Institute of Anatomy, University of Aarhus, Denmark. gd@neuro.au.dk

The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively. The distribution of zinc selenium autometallographic silver grains, and zinc transporter-3 and glutamate decarboxylase immunohistochemical puncta in both ventral and dorsal horns as seen in the light microscope corresponded to their presence in the synaptic vesicles of zinc-enriched terminals at ultrastructural levels. The densest populations of zinc-enriched terminals were seen in dorsal horn laminae I, III and IV, whereas the deeper laminae V and VI contained fewer terminals. At ultrastructural levels, zinc-enriched terminals primarily formed symmetrical synapses on perikarya and dendrites. Only relatively few asymmetrical synapses were observed on zinc-enriched terminals. In general, the biggest zinc-enriched terminals contacted neuronal somata and large dendritic elements, while medium-sized and small terminals made contacts on small dendrites. The ventral horn was primarily populated by big and medium-sized zinc-enriched terminals, whereas the dorsal horn was dominated by medium-sized and small zinc-enriched terminals. The presence of boutons with flat synaptic vesicles with zinc ions and symmetric synaptic contacts suggests the presence of inhibitory zinc-enriched terminals in the mammalian spinal cord, and this was confirmed by the finding that zinc ions and glutamate decarboxylase are co-localized in these terminals. The pattern of zinc-enriched boutons in both dorsal and ventral horns is compatible with evidence suggesting that zinc may be involved in both sensory transmission and motor control.

UI MeSH Term Description Entries
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D015032 Zinc A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with ANEMIA, short stature, HYPOGONADISM, impaired WOUND HEALING, and geophagia. It is known by the symbol Zn.

Related Publications

G Danscher, and S M Jo, and E Varea, and Z Wang, and T B Cole, and H D Schrøder
December 2001, Brain research,
G Danscher, and S M Jo, and E Varea, and Z Wang, and T B Cole, and H D Schrøder
June 2016, Neuron,
G Danscher, and S M Jo, and E Varea, and Z Wang, and T B Cole, and H D Schrøder
December 1969, Brain research,
G Danscher, and S M Jo, and E Varea, and Z Wang, and T B Cole, and H D Schrøder
September 2010, Neuroscience,
G Danscher, and S M Jo, and E Varea, and Z Wang, and T B Cole, and H D Schrøder
June 2002, TheScientificWorldJournal,
G Danscher, and S M Jo, and E Varea, and Z Wang, and T B Cole, and H D Schrøder
September 1977, Journal of neurophysiology,
G Danscher, and S M Jo, and E Varea, and Z Wang, and T B Cole, and H D Schrøder
December 1980, JAMA,
G Danscher, and S M Jo, and E Varea, and Z Wang, and T B Cole, and H D Schrøder
March 2003, Neuroreport,
G Danscher, and S M Jo, and E Varea, and Z Wang, and T B Cole, and H D Schrøder
January 2022, Frontiers in molecular neuroscience,
G Danscher, and S M Jo, and E Varea, and Z Wang, and T B Cole, and H D Schrøder
January 2021, Frontiers in neural circuits,
Copied contents to your clipboard!