Recent molecular advances in mammalian glutamine transport. 2001

B P Bode
Department of Biology, Saint Louis University, St. Louis, MO 63103-2010, USA.

Much has been learned about plasma membrane glutamine transporter activities in health and disease over the past 30 years, including their potential regulatory role in metabolism. Since the 1960s, discrimination among individual glutamine transporters was based on functional characteristics such as substrate specificity, ion dependence, and kinetic and regulatory properties. Within the past two years, several genes encoding for proteins with these defined activities (termed "systems") have been isolated from human and rodent cDNA libraries and found to be distributed among four distinct gene families. The Na(+)-dependent glutamine transporter genes isolated thus far are System N (SN1), System A (ATA1, ATA2), System ASC/B(0) (ASCT2 or ATB(0)), System B(0,+) (ATB(0,+)) and System y(+)L (y(+)LAT1, y(+)LAT2). Na(+)-independent glutamine transporter genes encoding for System L (LAT1, LAT2) and System b(0,+) (b(0,+)AT) have also been recently isolated, and similar to y(+)L, have been shown to function as disulfide-linked heterodimers with the 4F2 heavy chain (CD98) or rBAT (related to b(0,+) amino acid transporter). In this review, the molecular features, catalytic mechanisms and tissue distributions of each are addressed. Although most of these transporters mediate the transmembrane movement of several other amino acids, their potential roles in regulating interorgan glutamine flux are discussed. Most importantly, these newly isolated transporter genes provide the long awaited tools necessary to study their molecular regulation during the catabolic states in which glutamine is considered to be "conditionally essential."

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D009747 Nutritional Physiological Phenomena The processes and properties of living organisms by which they take in and balance the use of nutritive materials for energy, heat production, or building material for the growth, maintenance, or repair of tissues and the nutritive properties of FOOD. Nutrition Physiological Phenomena,Nutrition Physiology,Nutrition Processes,Nutritional Physiology Phenomena,Nutrition Phenomena,Nutrition Physiological Concepts,Nutrition Physiological Phenomenon,Nutrition Process,Nutritional Phenomena,Nutritional Physiological Phenomenon,Nutritional Physiology,Nutritional Physiology Concepts,Nutritional Physiology Phenomenon,Nutritional Process,Nutritional Processes,Concept, Nutrition Physiological,Concept, Nutritional Physiology,Concepts, Nutrition Physiological,Concepts, Nutritional Physiology,Nutrition Physiological Concept,Nutritional Physiology Concept,Phenomena, Nutrition,Phenomena, Nutrition Physiological,Phenomena, Nutritional,Phenomena, Nutritional Physiological,Phenomena, Nutritional Physiology,Phenomenon, Nutrition Physiological,Phenomenon, Nutritional Physiological,Phenomenon, Nutritional Physiology,Physiological Concept, Nutrition,Physiological Concepts, Nutrition,Physiological Phenomena, Nutrition,Physiological Phenomena, Nutritional,Physiological Phenomenon, Nutrition,Physiological Phenomenon, Nutritional,Physiology Concept, Nutritional,Physiology Concepts, Nutritional,Physiology Phenomena, Nutritional,Physiology Phenomenon, Nutritional,Physiology, Nutrition,Physiology, Nutritional,Process, Nutrition,Process, Nutritional,Processes, Nutrition,Processes, Nutritional
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning

Related Publications

B P Bode
March 2006, Trends in biochemical sciences,
B P Bode
January 1993, Annual review of nutrition,
B P Bode
March 1998, Seminars in nephrology,
B P Bode
July 1992, The Biochemical journal,
B P Bode
January 2007, Frontiers in bioscience : a journal and virtual library,
B P Bode
January 2014, FEBS letters,
B P Bode
January 2020, Science China. Life sciences,
B P Bode
September 1998, Cellular and molecular life sciences : CMLS,
B P Bode
January 1998, Biochemistry and cell biology = Biochimie et biologie cellulaire,
Copied contents to your clipboard!