Electric fields in the human body resulting from 60-Hz contact currents. 2001

T W Dawson, and K Caputa, and M A Stuchly, and R Kavet
Department of Electrical and Computer Engineering, University of Victoria, BC, Canada.

Contact currents occur when a person touches conductive surfaces at different potentials and completes a path for current flow through the body. Such currents provide an additional coupling mechanism to that, due to the direct field effect between the human body and low-frequency external fields. The scalar potential finite difference method, with minor modifications, is applied to assess current density and electric field within excitable tissue and bone marrow due to contact current. An anatomically correct adult model is used, as well as a proportionally downsized child model. Three pathways of contact current are modeled: hand to opposite hand and both feet, hand to hand only, and hand to both feet. Because of its larger size relative to the child, the adult model has lower electric field and current-density values in tissues/unit of contact current. For a contact current of 1 mA [the occupational reference level set by the International Commission on Non-ionizing Protection (ICNIRP)], the current density in brain does not exceed the basic restriction of 10 mA/m2. The restriction is exceeded slightly in the spine, and by a factor of more than 2 in the heart. For a contact current of 0.5 mA (ICNIRP general public reference level), the basic restriction of 2 mA/m2 is exceeded several-fold in the spine and heart. Several microamperes of contact current produces tens of mV/m within the child's lower arm bone marrow.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008432 Mathematical Computing Computer-assisted interpretation and analysis of various mathematical functions related to a particular problem. Statistical Computing,Computing, Statistical,Mathematic Computing,Statistical Programs, Computer Based,Computing, Mathematic,Computing, Mathematical,Computings, Mathematic,Computings, Mathematical,Computings, Statistical,Mathematic Computings,Mathematical Computings,Statistical Computings
D008953 Models, Anatomic Three-dimensional representation to show anatomic structures. Models may be used in place of intact animals or organisms for teaching, practice, and study. Anatomic Models,Models, Surgical,Moulages,Models, Anatomical,Anatomic Model,Anatomical Model,Anatomical Models,Model, Anatomic,Model, Anatomical,Model, Surgical,Moulage,Surgical Model,Surgical Models
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004560 Electricity The physical effects involving the presence of electric charges at rest and in motion.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

T W Dawson, and K Caputa, and M A Stuchly, and R Kavet
November 1994, IEEE transactions on bio-medical engineering,
T W Dawson, and K Caputa, and M A Stuchly, and R Kavet
January 1985, Bioelectromagnetics,
T W Dawson, and K Caputa, and M A Stuchly, and R Kavet
January 1985, Bioelectromagnetics,
T W Dawson, and K Caputa, and M A Stuchly, and R Kavet
January 1998, Bioelectromagnetics,
T W Dawson, and K Caputa, and M A Stuchly, and R Kavet
January 1987, Bioelectromagnetics,
T W Dawson, and K Caputa, and M A Stuchly, and R Kavet
January 1983, Bioelectromagnetics,
T W Dawson, and K Caputa, and M A Stuchly, and R Kavet
January 1991, Bioelectromagnetics,
T W Dawson, and K Caputa, and M A Stuchly, and R Kavet
September 1979, The Journal of microwave power,
T W Dawson, and K Caputa, and M A Stuchly, and R Kavet
January 1985, Bioelectromagnetics,
T W Dawson, and K Caputa, and M A Stuchly, and R Kavet
January 1999, Bioelectromagnetics,
Copied contents to your clipboard!