Proprioceptive modulation of hip flexor activity during the swing phase of locomotion in decerebrate cats. 2001

T Lam, and K G Pearson
University Centre for Neuroscience, University of Alberta, Edmonton, Alberta T6G 2S2, Canada. tlamb@ualberta.ca

This study examined the influence of proprioceptive input from hip flexor muscles on the activity in hip flexors during the swing phase of walking in the decerebrate cat. One hindlimb was partially denervated to remove cutaneous input and afferent input from most other hindlimb muscles. Perturbations to hip movement were applied either by 1) manual resistance or assistance to swing or by 2) resistance to hip flexion using a device that blocked hip flexion but allowed leg extension. Electromyographic recordings were made from the iliopsoas (IP), sartorius, and medial gastrocnemius muscles. When the hip was manually assisted into flexion, there was a reduction in hip flexor burst activity. Conversely, when hip flexion was manually resisted or mechanically blocked during swing, the duration and amplitude of hip flexor activity was increased. We also found some specificity in the role of afferents from individual hip flexor muscles in the modulation of flexor burst activity. If the IP muscle was detached from its insertion, little change in the response to blocking flexion was observed. Specific activation of IP afferent fibers by stretching the muscle also did not greatly affect flexor activity. On the other hand, if conduction in the sartorius nerves was blocked, there was a diminished response to blocking hip flexion. The increase in duration of the flexor bursts still occurred, but this increase was consistently lower than that observed when the sartorius nerves were intact. From these results we propose that during swing, feedback from hip flexor muscle afferents, particularly those from the sartorius muscles, enhances flexor activity. In addition, if we delayed the onset of flexor activity in the contralateral hindlimb, blocking hip flexion often resulted in the prolongation of ipsilateral flexor activity for long periods of time, further revealing the reinforcing effects of flexor afferent feedback on flexor activity. This effect was not seen if conduction in the sartorius nerves was blocked. In conclusion, we have found that hip flexor activity during locomotion can be strongly modulated by modifying proprioceptive feedback from the hip flexor muscles.

UI MeSH Term Description Entries
D008297 Male Males
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D011434 Proprioception Sensory functions that transduce stimuli received by proprioceptive receptors in joints, tendons, muscles, and the INNER EAR into neural impulses to be transmitted to the CENTRAL NERVOUS SYSTEM. Proprioception provides sense of stationary positions and movements of one's body parts, and is important in maintaining KINESTHESIA and POSTURAL BALANCE. Labyrinthine Sense,Position Sense,Posture Sense,Sense of Equilibrium,Vestibular Sense,Sense of Position,Equilibrium Sense,Sense, Labyrinthine,Sense, Position,Sense, Posture,Sense, Vestibular
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005260 Female Females
D005684 Gait Manner or style of walking. Gaits

Related Publications

T Lam, and K G Pearson
January 1992, The Japanese journal of physiology,
T Lam, and K G Pearson
January 1985, Journal of biomechanics,
T Lam, and K G Pearson
September 1980, Journal of neurophysiology,
T Lam, and K G Pearson
February 2021, Scientific reports,
T Lam, and K G Pearson
November 1997, Journal of applied physiology (Bethesda, Md. : 1985),
T Lam, and K G Pearson
July 1989, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!