Auxin regulated gene expression and gravitropism in plants. 1995

T J Guilfoyle
University of Missouri, Department of Biochemistry, Columbia 65203, USA.

Transcription of two gene families, SAURs and GH3, in soybean has been shown to be specifically induced by the plant hormone auxin. The SAUR mRNAs have been shown to accumulate on the lower half and disappear from the upper half of soybean hypocotyls during gravitropic curvature. The SAUR and GH3 promoters have been fused to the beta-glucuronidase (GUS) reporter gene and shown to be specifically induced by auxins in transgenic tobacco plants. Histochemical staining and quantitative GUS assays indicate that these auxin inducible promoters are activated on the lower half of transgenic tobacco stems undergoing gravitropic curvature. The auxin transport inhibitors, TIBA and NPA, block both gravitropic curvature and the activation of the auxin responsive promoters in transgenic tobacco stems. The auxin responsive elements (AuxREs) within the SAUR and GH3 promoters have been identified, and these AuxREs are likely to be the elements that are responsible for the increased expression of the SAUR and GH3 genes during gravitropism.

UI MeSH Term Description Entries
D007210 Indoleacetic Acids Acetic acid derivatives of the heterocyclic compound indole. (Merck Index, 11th ed) Auxin,Auxins,Indolylacetic Acids,Acids, Indoleacetic,Acids, Indolylacetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D017343 Genes, Plant The functional hereditary units of PLANTS. Plant Genes,Gene, Plant,Plant Gene
D018506 Gene Expression Regulation, Plant Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants. Plant Gene Expression Regulation,Regulation of Gene Expression, Plant,Regulation, Gene Expression, Plant
D018521 Plant Physiological Phenomena The physiological processes, properties, and states characteristic of plants. Plant Physiological Processes,Plant Physiology,Physiology, Plant,Plant Physiologic Phenomena,Plant Physiologic Phenomenon,Plant Physiological Phenomenon,Plant Physiological Process,Phenomena, Plant Physiologic,Phenomena, Plant Physiological,Phenomenon, Plant Physiologic,Phenomenon, Plant Physiological,Phenomenons, Plant Physiological,Physiologic Phenomena, Plant,Physiologic Phenomenon, Plant,Physiological Phenomena, Plant,Physiological Phenomenon, Plant,Physiological Phenomenons, Plant,Physiological Process, Plant,Physiological Processes, Plant,Plant Physiological Phenomenons,Process, Plant Physiological,Processes, Plant Physiological
D018522 Gravitropism The directional growth of organisms in response to gravity. In plants, the main root is positively gravitropic (growing downwards) and a main stem is negatively gravitropic (growing upwards), irrespective of the positions in which they are placed. Plant gravitropism is thought to be controlled by auxin (AUXINS), a plant growth substance. (From Concise Dictionary of Biology, 1990) Geotropism,Geotropisms,Gravitropisms

Related Publications

T J Guilfoyle
January 1989, Biotechnology (Reading, Mass.),
T J Guilfoyle
January 2009, Annual review of genetics,
T J Guilfoyle
November 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
T J Guilfoyle
April 2003, Current opinion in plant biology,
T J Guilfoyle
February 2002, The Plant cell,
T J Guilfoyle
September 2002, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
T J Guilfoyle
September 2007, FEBS letters,
T J Guilfoyle
July 2002, Current biology : CB,
T J Guilfoyle
March 2000, Trends in plant science,
Copied contents to your clipboard!