Molecular mechanisms of retinoid action. 2001

H Gronemeyer, and R Miturski
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Illkirch, France. hg@igbmc.u-strasbg.fr

In the past few years our understanding of nuclear receptor (NR) action has been dramatically improved. This is due to to advancements in three fields, (i) 3D structure determination, (ii) analysis of the complexes formed between nuclear receptors and co-regulatory molecules, and (iii) the genetic analysis of nuclear receptor signalling by gene "knock out" and "knock in" technologies. The elucidation of the crystal structure of apo-, holo (agonist)- and antagonist-NR ligand-binding domain (LBD) complexes is of outstanding importance for our understanding of the structural principles, in particular of the ligand-induced allosteric alterations, that are at the basis of receptor action. The concomitant identification and functional analysis of co-regulators (TIFs, coactivators and co-repressors) previously predicted from squelching studies have provided the possibility to understand the propagation of the original signal from ligand binding through intramolecular allosteric effects to intermolecular interactions. Recent crystal data of receptor LBD heterodimers and LBD-agonist complexes with nuclear receptor interacting peptides of co-activators have provided molecular insights into receptor dimerization and receptor-coactivator interaction. Finally, analysis of the signalling compexes established over nuclear receptors, assembling enzymatic activities that can alter the acetylation status of chromatin at the promoter regions of target genes and (de)acetylate other transcription regulatory factors paves the way to a comprehension of receptor action at the chromatin level. But much remains to be learnt and the recent studies have pointed towards an enormous complexity of this signalling system. Insights into the mechanistic basis of promyelocytic leukemia and the role of retinoic acid in differentiation therapy have been obtained as a consequence of the above studies, justified the efforts and led to an increasing awareness of the nuclear receptor signalling systems in basic and applied research. Here we will review recent data with the focus on what we have learnt about the interplay between NR structure and function to provide a view of the early steps of nuclear receptor action.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

H Gronemeyer, and R Miturski
April 1990, American journal of respiratory cell and molecular biology,
H Gronemeyer, and R Miturski
August 1997, International journal of oncology,
H Gronemeyer, and R Miturski
July 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
H Gronemeyer, and R Miturski
December 2003, Trends in molecular medicine,
H Gronemeyer, and R Miturski
January 2014, Journal of pharmacological sciences,
H Gronemeyer, and R Miturski
June 2000, The Biochemical journal,
H Gronemeyer, and R Miturski
June 2014, Journal of clinical medicine,
H Gronemeyer, and R Miturski
March 1988, British journal of clinical practice. Supplement,
H Gronemeyer, and R Miturski
January 2011, Eksperimental'naia i klinicheskaia farmakologiia,
H Gronemeyer, and R Miturski
January 1994, Vitamins and hormones,
Copied contents to your clipboard!