Mammary epithelial cell-cycle progression via the alpha(2)beta(1) integrin: unique and synergistic roles of the alpha(2) cytoplasmic domain. 2001

P A Klekotka, and S A Santoro, and A Ho, and S F Dowdy, and M M Zutter
Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

The alpha(2)beta(1) integrin supports cell-cycle progression of mammary epithelial cells adherent to type I collagen matrices. Integrin collagen receptors containing the alpha(2) cytoplasmic domain stimulated expression of cyclin E and cyclin-dependent kinase (cdk)2, resulting in cyclin E/cdk2 activation in the absence of growth factors other than insulin. Integrin collagen receptors in which the alpha(2) cytoplasmic domain was replaced by the alpha(1) cytoplasmic domain or an alpha(2) subunit cytoplasmic domain truncated after the GFFKR sequence failed to stimulate cyclin E/cdk2 activation or entry into S phase in the absence of growth factors. Although overexpression of cyclins D or E or cdk2 in cells expressing the integrin collagen receptor with the alpha(1)-integrin cytoplasmic domain did not restore G(1) progression when mammary epithelial cells adhered to type I collagen, co-expression of cyclin E and cdk2 did rescue the ability of the transfectants to enter S phase. Activation of cyclin E/cdk2 complex by mammary epithelial cells required synergy between adhesion mediated by an integrin collagen receptor containing the alpha(2)-integrin subunit cytoplasmic domain and the insulin receptor.

UI MeSH Term Description Entries
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D001940 Breast In humans, one of the paired regions in the anterior portion of the THORAX. The breasts consist of the MAMMARY GLANDS, the SKIN, the MUSCLES, the ADIPOSE TISSUE, and the CONNECTIVE TISSUES. Breasts
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

P A Klekotka, and S A Santoro, and A Ho, and S F Dowdy, and M M Zutter
September 1994, Journal of immunology (Baltimore, Md. : 1950),
P A Klekotka, and S A Santoro, and A Ho, and S F Dowdy, and M M Zutter
August 2005, Immunity,
P A Klekotka, and S A Santoro, and A Ho, and S F Dowdy, and M M Zutter
October 1993, The Journal of biological chemistry,
P A Klekotka, and S A Santoro, and A Ho, and S F Dowdy, and M M Zutter
July 1992, Journal of cell science,
P A Klekotka, and S A Santoro, and A Ho, and S F Dowdy, and M M Zutter
November 1990, Gene,
P A Klekotka, and S A Santoro, and A Ho, and S F Dowdy, and M M Zutter
October 1996, European journal of biochemistry,
P A Klekotka, and S A Santoro, and A Ho, and S F Dowdy, and M M Zutter
November 1993, The Journal of cell biology,
P A Klekotka, and S A Santoro, and A Ho, and S F Dowdy, and M M Zutter
October 1994, The Journal of cell biology,
P A Klekotka, and S A Santoro, and A Ho, and S F Dowdy, and M M Zutter
May 1997, Journal of cell science,
P A Klekotka, and S A Santoro, and A Ho, and S F Dowdy, and M M Zutter
October 1993, FEBS letters,
Copied contents to your clipboard!