GSTA1 expression in normal, preneoplastic, and neoplastic human prostate tissue. 2001

J K Parsons, and C P Nelson, and W R Gage, and W G Nelson, and T W Kensler, and A M De Marzo
The Department of Urology, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA.

BACKGROUND Glutathione S-transferases (GSTs), inducible enzymes that catalyze the detoxification of reactive electrophiles and oxidants, protect against neoplastic transformation. Prostatic adenocarcinoma and high-grade prostatic intraepithelial neoplasia (HGPIN) fail to express GSTP1, a major class of GST. This failure of expression is associated with methlyation of the GSTP1 promoter, a somatic alteration proposed to be a critical step in prostatic carcinogenesis. However, simple atrophy and post-atrophic hyperplasia-proliferative lesions associated with chronic inflammation, which we have termed "proliferative inflammatory atrophy" (PIA)-express elevated levels of GSTP1. We postulated that this increase in GSTP1 expression in PIA occurs in response to increased oxidative stress. We examined the expression of another major class of GST, GSTA1, in the human prostate. METHODS We performed immunohistochemistry against GSTA1 on formalin-fixed radical prostatectomies (n = 45). A stereological grid point counting method was used to estimate the percent of cells staining positive for GSTA1 in normal prostate, PIA, HGPIN, and adenocarcinoma. RESULTS In contrast to GSTP1, normal peripheral zone epithelium was virtually devoid of GSTA1. Strikingly, though, epithelial cells in PIA demonstrated strong staining for GSTA1 (median of percent of cells staining positive = 44) as compared to those in normal peripheral zone (median = 3.0, P <.00001), HGPIN (median = 2.9, P <.00001), and adenocarcinoma (median = 3.8, P <.00001). Variations in GSTA1 were also detected between normal anatomic zones: the central zone showed an increase in the percentage of cells staining positive (median = 20.9) as compared to the transition (median = 0.47, P <.0002) and the peripheral (P <.0001) zones. CONCLUSIONS Expression of GSTA1 is increased in PIA, supporting the concept that cells within these lesions are subject to localized increases in oxidative stress. Low levels of GSTA1 and GSTP1 in HGPIN and adenocarcinoma suggest a broad lack of detoxification activity in these cells, which may be associated with carcinogenesis in the prostate.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008297 Male Males
D011230 Precancerous Conditions Pathological conditions that tend eventually to become malignant. Preneoplastic Conditions,Condition, Preneoplastic,Conditions, Preneoplastic,Preneoplastic Condition,Condition, Precancerous,Conditions, Precancerous,Precancerous Condition
D011467 Prostate A gland in males that surrounds the neck of the URINARY BLADDER and the URETHRA. It secretes a substance that liquefies coagulated semen. It is situated in the pelvic cavity behind the lower part of the PUBIC SYMPHYSIS, above the deep layer of the triangular ligament, and rests upon the RECTUM. Prostates
D011468 Prostatectomy Complete or partial surgical removal of the prostate. Three primary approaches are commonly employed: suprapubic - removal through an incision above the pubis and through the urinary bladder; retropubic - as for suprapubic but without entering the urinary bladder; and transurethral (TRANSURETHRAL RESECTION OF PROSTATE). Prostatectomy, Retropubic,Prostatectomy, Suprapubic,Prostatectomies,Prostatectomies, Retropubic,Prostatectomies, Suprapubic,Retropubic Prostatectomies,Retropubic Prostatectomy,Suprapubic Prostatectomies,Suprapubic Prostatectomy
D011471 Prostatic Neoplasms Tumors or cancer of the PROSTATE. Cancer of Prostate,Prostate Cancer,Cancer of the Prostate,Neoplasms, Prostate,Neoplasms, Prostatic,Prostate Neoplasms,Prostatic Cancer,Cancer, Prostate,Cancer, Prostatic,Cancers, Prostate,Cancers, Prostatic,Neoplasm, Prostate,Neoplasm, Prostatic,Prostate Cancers,Prostate Neoplasm,Prostatic Cancers,Prostatic Neoplasm
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000230 Adenocarcinoma A malignant epithelial tumor with a glandular organization. Adenocarcinoma, Basal Cell,Adenocarcinoma, Granular Cell,Adenocarcinoma, Oxyphilic,Adenocarcinoma, Tubular,Adenoma, Malignant,Carcinoma, Cribriform,Carcinoma, Granular Cell,Carcinoma, Tubular,Adenocarcinomas,Adenocarcinomas, Basal Cell,Adenocarcinomas, Granular Cell,Adenocarcinomas, Oxyphilic,Adenocarcinomas, Tubular,Adenomas, Malignant,Basal Cell Adenocarcinoma,Basal Cell Adenocarcinomas,Carcinomas, Cribriform,Carcinomas, Granular Cell,Carcinomas, Tubular,Cribriform Carcinoma,Cribriform Carcinomas,Granular Cell Adenocarcinoma,Granular Cell Adenocarcinomas,Granular Cell Carcinoma,Granular Cell Carcinomas,Malignant Adenoma,Malignant Adenomas,Oxyphilic Adenocarcinoma,Oxyphilic Adenocarcinomas,Tubular Adenocarcinoma,Tubular Adenocarcinomas,Tubular Carcinoma,Tubular Carcinomas

Related Publications

J K Parsons, and C P Nelson, and W R Gage, and W G Nelson, and T W Kensler, and A M De Marzo
June 1995, Cancer research,
J K Parsons, and C P Nelson, and W R Gage, and W G Nelson, and T W Kensler, and A M De Marzo
December 2017, BMC veterinary research,
J K Parsons, and C P Nelson, and W R Gage, and W G Nelson, and T W Kensler, and A M De Marzo
January 1990, Acta histochemica. Supplementband,
J K Parsons, and C P Nelson, and W R Gage, and W G Nelson, and T W Kensler, and A M De Marzo
January 2009, Journal of bone and mineral metabolism,
J K Parsons, and C P Nelson, and W R Gage, and W G Nelson, and T W Kensler, and A M De Marzo
June 2007, Veterinary and comparative oncology,
J K Parsons, and C P Nelson, and W R Gage, and W G Nelson, and T W Kensler, and A M De Marzo
January 2013, ISRN oncology,
J K Parsons, and C P Nelson, and W R Gage, and W G Nelson, and T W Kensler, and A M De Marzo
June 2008, American journal of clinical pathology,
J K Parsons, and C P Nelson, and W R Gage, and W G Nelson, and T W Kensler, and A M De Marzo
July 2015, Pathology oncology research : POR,
J K Parsons, and C P Nelson, and W R Gage, and W G Nelson, and T W Kensler, and A M De Marzo
January 1980, European urology,
J K Parsons, and C P Nelson, and W R Gage, and W G Nelson, and T W Kensler, and A M De Marzo
September 1976, Clinics in gastroenterology,
Copied contents to your clipboard!