Xenobiotic-metabolizing enzyme activities in primary cultures of rat type II pneumocytes and alveolar macrophages. 2001

S Dimova, and P H Hoet, and B Nemery
Laboratory of Pneumology, Unit of Lung Toxicology, Katholieke Universiteit Leuven, Leuven, Belgium.

Because of the evidence for the involvement of xenobiotic bioactivation in pulmonary toxicity and carcinogenesis, it is important to improve our understanding of the xenobiotic-metabolizing enzymes in isolated and cultured specific pulmonary cell populations. Some phase I and phase II xenobiotic-metabolizing enzyme activities, reduced glutathione (GSH), and gamma-glutamyl transferase (gamma-GT) were studied in rat type II pneumocytes and alveolar macrophages cultured for up to 48 h and 3 h, respectively. In type II pneumocytes, 7-ethoxyresorufin activity was not detected. 7-Benzyloxyresorufin (BROD) and 7-pentoxyresorufin (PROD) O-dealkylation decreased at 24 h by 84 and 82%, respectively, and continued to decline over the next 24 h with no measurable PROD at 48 h. The activity of NADPH- and NADH-cytochrome c reductase at 48 h decreased by 31 and 67%, respectively. GST activity decreased by 25 and 42% at 24 and 48 h, respectively. A transient increase in DT-diaphorase activity was observed at 24 h (by 55%). GSH content and gamma-GT activity increased significantly with time in culture. In freshly isolated alveolar macrophages, BROD activity was the only cytochrome P450-dependent alkoxyresorufin-O-dealkylase activity measured. BROD activity decreased by 38% in 3-h-attached macrophages. There were no changes in NADPH- and NADH-cytochrome c reductase, GST, and DT-diaphorase. An increase of GSH (by 24%) was observed in attached macrophages. In conclusion, type II pneumocytes and to a lesser extent alveolar macrophages in primary cultures undergo changes in biotransformation-related enzyme activities and intracellular GSH level that may affect xenobiotic toxicity at different times in culture.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005723 gamma-Glutamyltransferase An enzyme, sometimes called GGT, with a key role in the synthesis and degradation of GLUTATHIONE; (GSH, a tripeptide that protects cells from many toxins). It catalyzes the transfer of the gamma-glutamyl moiety to an acceptor amino acid. GGTP,Glutamyl Transpeptidase,gammaglutamyltransferase,gamma-Glutamyl Transpeptidase,Transpeptidase, Glutamyl,Transpeptidase, gamma-Glutamyl,gamma Glutamyl Transpeptidase,gamma Glutamyltransferase
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015262 Xenobiotics Chemical substances that are foreign to the biological system. They include naturally occurring compounds, drugs, environmental agents, carcinogens, insecticides, etc. Xenobiotic
D016676 Macrophages, Alveolar Round, granular, mononuclear phagocytes found in the alveoli of the lungs. They ingest small inhaled particles resulting in degradation and presentation of the antigen to immunocompetent cells. Alveolar Macrophages,Macrophages, Pulmonary,Pulmonary Macrophages,Macrophage, Pulmonary,Pulmonary Macrophage,Alveolar Macrophage,Macrophage, Alveolar
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S Dimova, and P H Hoet, and B Nemery
December 2003, Methods and findings in experimental and clinical pharmacology,
S Dimova, and P H Hoet, and B Nemery
May 1989, Experimental lung research,
S Dimova, and P H Hoet, and B Nemery
January 1991, Drug metabolism and disposition: the biological fate of chemicals,
S Dimova, and P H Hoet, and B Nemery
January 2006, Journal of applied toxicology : JAT,
S Dimova, and P H Hoet, and B Nemery
June 1986, Zhonghua jie he he hu xi xi ji bing za zhi = Chinese journal of tuberculosis and respiratory diseases,
S Dimova, and P H Hoet, and B Nemery
January 1996, The Journal of pharmacy and pharmacology,
S Dimova, and P H Hoet, and B Nemery
January 2000, Toxicology and applied pharmacology,
S Dimova, and P H Hoet, and B Nemery
January 1987, Biochimica et biophysica acta,
S Dimova, and P H Hoet, and B Nemery
September 1982, Bollettino della Societa italiana di biologia sperimentale,
S Dimova, and P H Hoet, and B Nemery
January 1989, Biochimica et biophysica acta,
Copied contents to your clipboard!