Conflict and integration of spatial attention between disconnected hemispheres. 2001

S Ishiai, and Y Koyama, and T Furuya
Department of Rehabilitation, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu City, Tokyo 183-8526, Japan. ishiai@tmin.ac.jp

OBJECTIVE To clarify how the disconnected hemispheres perceive a line and bisect it with successful or unsuccessful integration of spatial attention. METHODS Eye movements were recorded when a patient with an extensive callosa infarction bisected horizontal lines. The lesion extended into the left cingulate gyrus. RESULTS When the patient bisected lines with the right hand, the gaze was initially directed rightward and shifted further to the right side with the execution of manual response, which resulted in rightward errors. Shortly after bisection, rapid ocular searches occurred to the left side, whereas the rightward errors did not decrease throughout the trials. When using the left hand, there was no deviation of the gaze before presentation of lines. In the first few trials, the patient bisected the line with a leftward error and then searched rapidly to the right side. The subsequent bisections were almost accurate, as the subjective midpoint was placed near the point of the initial fixation that fell around the true centre. Ocular searching was mostly absent during and after line bisection. CONCLUSIONS In callosa disconnection, left unilateral spatial neglect may appear when use of the right hand induces a rightward bias in the attentional control of the left hemisphere and damage to its cingulate gyrus inhibits interhemispheric integration of attention. Resultant rightward errors of line bisection often cause interhemispheric conflict of attention, as the right hemisphere perceives the longer extent on the left side. By contrast, the disconnected but intact right hemisphere may bisect a line accurately by integrating attention to the extents perceived in the left and right visual fields.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009483 Neuropsychological Tests Tests designed to assess neurological function associated with certain behaviors. They are used in diagnosing brain dysfunction or damage and central nervous system disorders or injury. Aphasia Tests,Cognitive Test,Cognitive Testing,Cognitive Tests,Memory for Designs Test,Neuropsychological Testing,AX-CPT,Behavioral Assessment of Dysexecutive Syndrome,CANTAB,Cambridge Neuropsychological Test Automated Battery,Clock Test,Cognitive Function Scanner,Continuous Performance Task,Controlled Oral Word Association Test,Delis-Kaplan Executive Function System,Developmental Neuropsychological Assessment,Hooper Visual Organization Test,NEPSY,Neuropsychologic Tests,Neuropsychological Test,Paced Auditory Serial Addition Test,Repeatable Battery for the Assessment of Neuropsychological Status,Rey-Osterrieth Complex Figure,Symbol Digit Modalities Test,Test of Everyday Attention,Test, Neuropsychological,Tests, Neuropsychological,Tower of London Test,Neuropsychologic Test,Test, Cognitive,Testing, Cognitive,Testing, Neuropsychological,Tests, Cognitive
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D010468 Perceptual Disorders Cognitive disorders characterized by an impaired ability to perceive the nature of objects or concepts through use of the sense organs. These include spatial neglect syndromes, where an individual does not attend to visual, auditory, or sensory stimuli presented from one side of the body. Hemispatial Neglect,Hemisensory Neglect,Sensory Neglect,Somatosensory Discrimination Disorder,Discrimination Disorder, Somatosensory,Discrimination Disorders, Somatosensory,Hemisensory Neglects,Hemispatial Neglects,Neglect, Hemisensory,Neglect, Hemispatial,Neglect, Sensory,Neglects, Hemisensory,Perceptual Disorder,Sensory Neglects,Somatosensory Discrimination Disorders
D011597 Psychomotor Performance The coordination of a sensory or ideational (cognitive) process and a motor activity. Perceptual Motor Performance,Sensory Motor Performance,Visual Motor Coordination,Coordination, Visual Motor,Coordinations, Visual Motor,Motor Coordination, Visual,Motor Coordinations, Visual,Motor Performance, Perceptual,Motor Performance, Sensory,Motor Performances, Perceptual,Motor Performances, Sensory,Perceptual Motor Performances,Performance, Perceptual Motor,Performance, Psychomotor,Performance, Sensory Motor,Performances, Perceptual Motor,Performances, Psychomotor,Performances, Sensory Motor,Psychomotor Performances,Sensory Motor Performances,Visual Motor Coordinations
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002544 Cerebral Infarction The formation of an area of NECROSIS in the CEREBRUM caused by an insufficiency of arterial or venous blood flow. Infarcts of the cerebrum are generally classified by hemisphere (i.e., left vs. right), lobe (e.g., frontal lobe infarction), arterial distribution (e.g., INFARCTION, ANTERIOR CEREBRAL ARTERY), and etiology (e.g., embolic infarction). Anterior Choroidal Artery Infarction,Cerebral Infarct,Infarction, Cerebral,Posterior Choroidal Artery Infarction,Subcortical Infarction,Cerebral Infarction, Left Hemisphere,Cerebral Infarction, Right Hemisphere,Cerebral, Left Hemisphere, Infarction,Cerebral, Right Hemisphere, Infarction,Infarction, Cerebral, Left Hemisphere,Infarction, Cerebral, Right Hemisphere,Infarction, Left Hemisphere, Cerebral,Infarction, Right Hemisphere, Cerebral,Left Hemisphere, Cerebral Infarction,Left Hemisphere, Infarction, Cerebral,Right Hemisphere, Cerebral Infarction,Right Hemisphere, Infarction, Cerebral,Cerebral Infarctions,Cerebral Infarcts,Infarct, Cerebral,Infarction, Subcortical,Infarctions, Cerebral,Infarctions, Subcortical,Infarcts, Cerebral,Subcortical Infarctions

Related Publications

S Ishiai, and Y Koyama, and T Furuya
March 2003, Journal of neurology, neurosurgery, and psychiatry,
S Ishiai, and Y Koyama, and T Furuya
April 1991, Brain : a journal of neurology,
S Ishiai, and Y Koyama, and T Furuya
May 1994, Brain and cognition,
S Ishiai, and Y Koyama, and T Furuya
March 1989, Cortex; a journal devoted to the study of the nervous system and behavior,
S Ishiai, and Y Koyama, and T Furuya
January 2001, Neuropsychologia,
S Ishiai, and Y Koyama, and T Furuya
August 2020, Social neuroscience,
S Ishiai, and Y Koyama, and T Furuya
May 2010, Neuropsychologia,
S Ishiai, and Y Koyama, and T Furuya
November 2005, Vision research,
S Ishiai, and Y Koyama, and T Furuya
February 2024, Quarterly journal of experimental psychology (2006),
S Ishiai, and Y Koyama, and T Furuya
February 2015, Attention, perception & psychophysics,
Copied contents to your clipboard!