The toxicity of chlorpyrifos towards differentiating mouse N2a neuroblastoma cells. 2001

M Sachana, and J Flaskos, and E Alexaki, and P Glynn, and A J Hargreaves
Laboratory of Biochemistry and Toxicology, Faculty of Veterinary Medicine, Aristotelian University, Thessaloniki, Greece.

The aim of this work was to study the effects of chlorpyrifos (CPF) on the outgrowth of axons by differentiating mouse N2a neuroblastoma cells. This was achieved by morphological, Western blotting and enzymatic analyses of cells induced to differentiate in the presence and absence of CPF added either at the same time (co-differentiation) or 16 h after (post-differentiation) the induction of cell differentiation. The outgrowth of axon-like processes was impaired following 4 or 8 h exposure to CPF in both co- and post-differentiation experiments. Western blotting analysis revealed reduced levels of neurofilament heavy chain (NF-H) following 8 h of exposure but no significant effect at 4 h under both co- and post-differentiation conditions. By contrast, levels of the heat shock protein HSP-70 were raised at both time points, but only in co-differentiation experiments. Neuropathy target esterase (NTE) activity was lower than controls following 4 or 8 h of exposure under co-differentiation conditions, but not under any post-differentiation conditions. The results suggest that the inhibition of axon production and maintenance by CPF in differentiating N2a cells may involve multiple targets, which are different under co- and post-differentiation conditions.

UI MeSH Term Description Entries
D007306 Insecticides Pesticides designed to control insects that are harmful to man. The insects may be directly harmful, as those acting as disease vectors, or indirectly harmful, as destroyers of crops, food products, or textile fabrics. Insecticide
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D002265 Carboxylic Ester Hydrolases Enzymes which catalyze the hydrolysis of carboxylic acid esters with the formation of an alcohol and a carboxylic acid anion. Carboxylesterases,Ester Hydrolases, Carboxylic,Hydrolases, Carboxylic Ester
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004390 Chlorpyrifos An organothiophosphate cholinesterase inhibitor that is used as an insecticide and as an acaricide. Dursban,Lorsban
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D016501 Neurites In tissue culture, hairlike projections of neurons stimulated by growth factors and other molecules. These projections may go on to form a branched tree of dendrites or a single axon or they may be reabsorbed at a later stage of development. "Neurite" may refer to any filamentous or pointed outgrowth of an embryonal or tissue-culture neural cell. Neurite
D016900 Neurofilament Proteins Type III intermediate filament proteins that assemble into neurofilaments, the major cytoskeletal element in nerve axons and dendrites. They consist of three distinct polypeptides, the neurofilament triplet. Types I, II, and IV intermediate filament proteins form other cytoskeletal elements such as keratins and lamins. It appears that the metabolism of neurofilaments is disturbed in Alzheimer's disease, as indicated by the presence of neurofilament epitopes in the neurofibrillary tangles, as well as by the severe reduction of the expression of the gene for the light neurofilament subunit of the neurofilament triplet in brains of Alzheimer's patients. (Can J Neurol Sci 1990 Aug;17(3):302) Neurofilament Protein,Heavy Neurofilament Protein,Neurofilament Triplet Proteins,Neurofilament Protein, Heavy,Protein, Heavy Neurofilament,Protein, Neurofilament,Proteins, Neurofilament,Proteins, Neurofilament Triplet,Triplet Proteins, Neurofilament

Related Publications

M Sachana, and J Flaskos, and E Alexaki, and P Glynn, and A J Hargreaves
October 1999, Toxicology letters,
M Sachana, and J Flaskos, and E Alexaki, and P Glynn, and A J Hargreaves
February 2001, Journal of neurochemistry,
M Sachana, and J Flaskos, and E Alexaki, and P Glynn, and A J Hargreaves
February 2010, Toxicology letters,
M Sachana, and J Flaskos, and E Alexaki, and P Glynn, and A J Hargreaves
July 2000, Journal of neurochemistry,
M Sachana, and J Flaskos, and E Alexaki, and P Glynn, and A J Hargreaves
January 2021, EXCLI journal,
M Sachana, and J Flaskos, and E Alexaki, and P Glynn, and A J Hargreaves
December 2012, Neurochemistry international,
M Sachana, and J Flaskos, and E Alexaki, and P Glynn, and A J Hargreaves
October 2007, Toxicology in vitro : an international journal published in association with BIBRA,
M Sachana, and J Flaskos, and E Alexaki, and P Glynn, and A J Hargreaves
March 2014, The Journal of membrane biology,
M Sachana, and J Flaskos, and E Alexaki, and P Glynn, and A J Hargreaves
December 1978, The Biochemical journal,
M Sachana, and J Flaskos, and E Alexaki, and P Glynn, and A J Hargreaves
December 2008, General physiology and biophysics,
Copied contents to your clipboard!