Effect of T-type selective calcium antagonist on renal microcirculation: studies in the isolated perfused hydronephrotic kidney. 2001

Y Ozawa, and K Hayashi, and T Nagahama, and K Fujiwara, and T Saruta
Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan.

Although calcium antagonists exert preferential vasodilation of renal afferent arterioles, we have recently demonstrated that nilvadipine and efonidipine, possessing both L-type and T-type calcium channel blocking action, reverse the angiotensin (Ang) II-induced afferent and efferent arteriolar constriction. In the present study, we investigated the role of T-type calcium channels in mediating the Ang II-induced efferent arteriolar tone using the selective T-type calcium channel blocker mibefradil. Isolated perfused hydronephrotic rat kidneys were used for direct visualization of renal microcirculation. Administration of Ang II (0.3 nmol/L) caused marked constriction of afferent (from 13.5+/-0.6 to 9.2+/-0.6 microm, P<0.01, n=6) and efferent (from 11.5+/-1.0 to 7.4+/-0.7 microm, P<0.01, n=5) arterioles. Mibefradil (1 micromol/L) dilated both vessels, with 82+/-11% and 72+/-7% reversal of afferent and efferent arterioles, respectively. Similarly, nickel chloride (100 micromol/L) caused dilation of both arterioles, similar in magnitude in afferent (68+/-10%, n=7) and efferent (80+/-7%, n=7) arterioles. To eliminate the possibility that the mibefradil-induced dilation was mediated by L-type channel blockade, mibefradil was administered in the presence of nifedipine (1 micromol/L). Thus, nifedipine caused modest efferent arteriolar dilation (30+/-6% reversal, n=9), and subsequent addition of mibefradil elicited further dilation of this vessel (80+/-4%, P<0.01 versus nifedipine). Furthermore, mibefradil reversed the Ang II-induced efferent arteriolar constriction even in the presence of nifedipine and phentolamine. These findings demonstrate that T-type calcium antagonists markedly dilate the Ang II-induced efferent arteriolar constriction, but the action is not mediated by inhibition of catecholamine release. This potent activity would contribute to the efferent arteriolar response to nilvadipine and efonidipine and may offer benefit in light of glomerular hemodynamics.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010646 Phentolamine A nonselective alpha-adrenergic antagonist. It is used in the treatment of hypertension and hypertensive emergencies, pheochromocytoma, vasospasm of RAYNAUD DISEASE and frostbite, clonidine withdrawal syndrome, impotence, and peripheral vascular disease. Fentolamin,Phentolamine Mesilate,Phentolamine Mesylate,Phentolamine Methanesulfonate,Phentolamine Mono-hydrochloride,Regitine,Regityn,Rogitine,Z-Max,Mesilate, Phentolamine,Mesylate, Phentolamine,Methanesulfonate, Phentolamine,Mono-hydrochloride, Phentolamine,Phentolamine Mono hydrochloride
D012077 Renal Artery A branch of the abdominal aorta which supplies the kidneys, adrenal glands and ureters. Arteries, Renal,Artery, Renal,Renal Arteries
D012079 Renal Circulation The circulation of the BLOOD through the vessels of the KIDNEY. Kidney Circulation,Renal Blood Flow,Circulation, Kidney,Circulation, Renal,Blood Flow, Renal,Flow, Renal Blood
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D006869 Hydronephrosis Abnormal enlargement or swelling of a KIDNEY due to dilation of the KIDNEY CALICES and the KIDNEY PELVIS. It is often associated with obstruction of the URETER or chronic kidney diseases that prevents normal drainage of urine into the URINARY BLADDER. Hydronephroses
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine

Related Publications

Y Ozawa, and K Hayashi, and T Nagahama, and K Fujiwara, and T Saruta
May 1997, Kidney international,
Y Ozawa, and K Hayashi, and T Nagahama, and K Fujiwara, and T Saruta
April 1991, American journal of hypertension,
Y Ozawa, and K Hayashi, and T Nagahama, and K Fujiwara, and T Saruta
December 1989, Circulation research,
Y Ozawa, and K Hayashi, and T Nagahama, and K Fujiwara, and T Saruta
April 1982, Circulation research,
Y Ozawa, and K Hayashi, and T Nagahama, and K Fujiwara, and T Saruta
October 1998, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
Y Ozawa, and K Hayashi, and T Nagahama, and K Fujiwara, and T Saruta
January 1976, Current problems in clinical biochemistry,
Y Ozawa, and K Hayashi, and T Nagahama, and K Fujiwara, and T Saruta
January 1991, Renal physiology and biochemistry,
Y Ozawa, and K Hayashi, and T Nagahama, and K Fujiwara, and T Saruta
August 1990, International journal of microcirculation, clinical and experimental,
Y Ozawa, and K Hayashi, and T Nagahama, and K Fujiwara, and T Saruta
January 1996, International review of experimental pathology,
Y Ozawa, and K Hayashi, and T Nagahama, and K Fujiwara, and T Saruta
November 1997, The American journal of cardiology,
Copied contents to your clipboard!