Methodologic guidelines for the design of high-dose chemotherapy regimens. 2001

K Margolin, and T Synold, and J Longmate, and J H Doroshow
Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California USA. kmargolin@coh.org

OBJECTIVE The objective of this report is to review the research methods that have been used in the design, analysis, and reporting of Phase I dose-escalation studies of high-dose chemotherapy (HDCT) with bone marrow or stem cell support and to propose new guidelines for such studies that incorporate emerging principles of pharmacology, toxicity assessment, statistical design, and long-term follow-up. METHODS We performed a search of original, English-language, peer-reviewed full-length reports of HDCT (with or without radiotherapy) and unmanipulated hematopoietic precursor support (autologous bone marrow or stem cells or allogeneic bone marrow) in which one or more drug doses were escalated to identify dose-limiting toxicities needed for the design of subsequent Phase II trials. We reviewed the design, execution, analysis, and reporting of these trials to develop a coherent set of guidelines for the initiation of new HDCT regimens. The primary elements included in our analysis were the technique of dose escalation, the choice and application of toxicity grading scale, and the pharmacologic correlates of dose escalation. We also evaluated the methods employed to define dose-limiting toxicities and to select the maximum tolerated dose and the dose recommended for further study. We then examined whether subsequent Phase II trials based on these definitions corroborated the findings from the prior Phase I studies and summarized the findings from pharmacologic analyses that were reported from a subset of these investigations. RESULTS Thirty-five reports met the criteria for our literature review. Two standard methods of dose escalation (fixed increments or modified Fibonacci increments) were described in detail and were employed in the majority (30/35) of the studies. In 5 studies, the details of dose escalation were either not provided or not adequately referenced. There was marked heterogeneity among toxicity grading methods; scales used included the National Cancer Institute Common Toxicity Criteria (or similar scales such as the United States cooperative group or World Health Organization scales) as well as substantially modified versions of those instruments. Wide variations in the methods used to identify dose-limiting toxicities were observed. Statistical considerations, applied to the identification of the maximum tolerated or Phase II recommended dose, were similarly heterogeneous. Phase II trial designs varied from a simple expansion of the Phase I trial to separate, formally conducted studies. Nine Phase I trials featured pharmacologic analyses, and these ranged from simple pharmacokinetic evaluations to more complex analyses of the relationship between drug dose and the molecular targets of drug action. CONCLUSIONS Phase I clinical trials in the HDCT setting have been designed, analyzed, and reported using heterogeneous methods that limited their application to Phase II and II investigations. Moreover, correlative pharmacologic analyses have not been routinely undertaken during this critical Phase I stage. We propose guidelines for the design of new Phase I studies of HDCT based on 4 essential elements: (1) rational preclinical and clinical pharmacologic foundation for the regimen and for the agent selected for dose escalation; (2) incorporation of analytical pharmacology in the design and analysis of the regimen under investigation; (3) clear, prospective definitions of the dose- or exposure-limiting toxicities that can be distinguished from modality-dependent toxicities; selection of an appropriate toxicity grading scale, including an assessment of cumulative, delayed, and long-term effects of HDCT, particularly when designing tandem or repetitive cycle regimens; and (4) statistical input into the design, execution, analysis, interpretation, and reporting of these studies.

UI MeSH Term Description Entries
D012106 Research Critical and exhaustive investigation or experimentation, having for its aim the discovery of new facts and their correct interpretation, the revision of accepted conclusions, theories, or laws in the light of newly discovered facts, or the practical application of such new or revised conclusions, theories, or laws. (Webster, 3d ed) Research Priorities,Laboratory Research,Research Activities,Research and Development,Activities, Research,Activity, Research,Development and Research,Priorities, Research,Priority, Research,Research Activity,Research Priority,Research, Laboratory
D012107 Research Design A plan for collecting and utilizing data so that desired information can be obtained with sufficient precision or so that an hypothesis can be tested properly. Experimental Design,Data Adjustment,Data Reporting,Design, Experimental,Designs, Experimental,Error Sources,Experimental Designs,Matched Groups,Methodology, Research,Problem Formulation,Research Methodology,Research Proposal,Research Strategy,Research Technics,Research Techniques,Scoring Methods,Adjustment, Data,Adjustments, Data,Data Adjustments,Design, Research,Designs, Research,Error Source,Formulation, Problem,Formulations, Problem,Group, Matched,Groups, Matched,Matched Group,Method, Scoring,Methods, Scoring,Problem Formulations,Proposal, Research,Proposals, Research,Reporting, Data,Research Designs,Research Proposals,Research Strategies,Research Technic,Research Technique,Scoring Method,Source, Error,Sources, Error,Strategies, Research,Strategy, Research,Technic, Research,Technics, Research,Technique, Research,Techniques, Research
D002985 Clinical Protocols Precise and detailed plans for the study of a medical or biomedical problem and/or plans for a regimen of therapy. Protocols, Clinical,Research Protocols, Clinical,Treatment Protocols,Clinical Protocol,Clinical Research Protocol,Clinical Research Protocols,Protocol, Clinical,Protocol, Clinical Research,Protocols, Clinical Research,Protocols, Treatment,Research Protocol, Clinical,Treatment Protocol
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000971 Antineoplastic Combined Chemotherapy Protocols The use of two or more chemicals simultaneously or sequentially in the drug therapy of neoplasms. The drugs need not be in the same dosage form. Anticancer Drug Combinations,Antineoplastic Agents, Combined,Antineoplastic Chemotherapy Protocols,Antineoplastic Drug Combinations,Cancer Chemotherapy Protocols,Chemotherapy Protocols, Antineoplastic,Drug Combinations, Antineoplastic,Antineoplastic Combined Chemotherapy Regimens,Combined Antineoplastic Agents,Agent, Combined Antineoplastic,Agents, Combined Antineoplastic,Anticancer Drug Combination,Antineoplastic Agent, Combined,Antineoplastic Chemotherapy Protocol,Antineoplastic Drug Combination,Cancer Chemotherapy Protocol,Chemotherapy Protocol, Antineoplastic,Chemotherapy Protocol, Cancer,Chemotherapy Protocols, Cancer,Combinations, Antineoplastic Drug,Combined Antineoplastic Agent,Drug Combination, Anticancer,Drug Combination, Antineoplastic,Drug Combinations, Anticancer,Protocol, Antineoplastic Chemotherapy,Protocol, Cancer Chemotherapy,Protocols, Antineoplastic Chemotherapy,Protocols, Cancer Chemotherapy
D017321 Clinical Trials, Phase I as Topic Works about studies performed to evaluate the safety of diagnostic, therapeutic, or prophylactic drugs, devices, or techniques in healthy subjects and to determine the safe dosage range (if appropriate). These tests also are used to determine pharmacologic and pharmacokinetic properties (toxicity, metabolism, absorption, elimination, and preferred route of administration). They involve a small number of persons and usually last about 1 year. This concept includes phase I studies conducted both in the U.S. and in other countries. Clinical Trials, Phase I,Drug Evaluation, FDA Phase I,Evaluation Studies, FDA Phase I,Human Microdosing Trial,Phase 1 Clinical Trial,Phase I Clinical Trial,Phase I Clinical Trials,Clinical Trials, Phase 1,Drug Evaluation, FDA Phase 1,Drug Evaluation, FDA Phase I as Topic,Evaluation Studies, FDA Phase 1,Human Microdosing Trials,Microdosing Trials, Human,Phase 1 Clinical Trials,Microdosing Trial, Human,Trial, Human Microdosing,Trials, Human Microdosing
D017408 Guidelines as Topic Works about a systematic statement of policy rules or principles. Guidelines may be developed by government agencies at any level, institutions, professional societies, governing boards, or by convening expert panels. For guidelines in the field of health care and clinical medicine, PRACTICE GUIDELINES AS TOPIC is available. Guidelines as Topics

Related Publications

K Margolin, and T Synold, and J Longmate, and J H Doroshow
February 1986, Medical hypotheses,
K Margolin, and T Synold, and J Longmate, and J H Doroshow
March 1995, Cancer treatment reviews,
K Margolin, and T Synold, and J Longmate, and J H Doroshow
October 1997, Annals of oncology : official journal of the European Society for Medical Oncology,
K Margolin, and T Synold, and J Longmate, and J H Doroshow
April 1998, Seminars in oncology,
K Margolin, and T Synold, and J Longmate, and J H Doroshow
January 2007, Journal of the National Comprehensive Cancer Network : JNCCN,
K Margolin, and T Synold, and J Longmate, and J H Doroshow
December 2005, Nature clinical practice. Urology,
K Margolin, and T Synold, and J Longmate, and J H Doroshow
October 2001, Cancer,
K Margolin, and T Synold, and J Longmate, and J H Doroshow
January 1994, Anticancer research,
K Margolin, and T Synold, and J Longmate, and J H Doroshow
June 2021, Obstetrics and gynecology,
K Margolin, and T Synold, and J Longmate, and J H Doroshow
January 1994, Progress in clinical and biological research,
Copied contents to your clipboard!