Hybrid dysgenesis in Drosophila melanogaster: the biology of female and male sterility. 1979

W R Engels, and C R Preston

High levels of female and male sterility were observed among the hybrids from one of the two reciprocal crosses between a wild strain of D. melanogaster known as pi2 and laboratory strains. The sterility, which is part of a common syndrome called hybrid dysgenesis, was found to be associated with the rudimentary condition of one or both of the ovaries or testes. All other tissues, including those of the reproductive system were normal, as were longevity and mating behavior. The morphological details of the sterility closely mimic the agametic condition occurring when germ cells are destroyed by irradiation or by the maternal-effect mutation, grandchildless. We suggest that sterility in hybrid dysgenesis is also caused by failure in the early development of germ cells. There is a thermo-sensitive period beginning at approximately the time of initiation of mitosis among primordial germ cells a few hours before the egg hatches and ending during the early larval stages. Our results suggest that hybrid dysgenesis, which also includes male recombination, mutation and other traits, may be limited to the germ line, and that each of the primordial germ cells develops, or fails to develop, independently of the others. This hypothesis is consistent with the observed frequencies of unilateral and bilateral sterility, with the shape of the thermosensitivity curves and with the fact that males are less often sterile than females. The features of this intraspecific hybrid sterility are found to resemble those seen in some interspecific Drosophila hybrids, especially those from the cross D. melanogaster X D. simulans.

UI MeSH Term Description Entries
D007246 Infertility A reduced or absent capacity to reproduce. Sterility,Reproductive Sterility,Sterility, Reproductive,Sub-Fertility,Subfertility
D008297 Male Males
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D006824 Hybridization, Genetic The genetic process of crossbreeding between genetically dissimilar parents to produce a hybrid. Crossbreeding,Hybridization, Intraspecies,Crossbreedings,Genetic Hybridization,Genetic Hybridizations,Hybridizations, Genetic,Hybridizations, Intraspecies,Intraspecies Hybridization,Intraspecies Hybridizations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012737 Sex Factors Maleness or femaleness as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or effect of a circumstance. It is used with human or animal concepts but should be differentiated from SEX CHARACTERISTICS, anatomical or physiological manifestations of sex, and from SEX DISTRIBUTION, the number of males and females in given circumstances. Factor, Sex,Factors, Sex,Sex Factor

Related Publications

W R Engels, and C R Preston
November 1978, Genetical research,
W R Engels, and C R Preston
December 2007, Genetical research,
W R Engels, and C R Preston
February 1980, Science (New York, N.Y.),
W R Engels, and C R Preston
August 1968, The Journal of experimental zoology,
Copied contents to your clipboard!