Direct inhibition of Bruton's tyrosine kinase by IBtk, a Btk-binding protein. 2001

W Liu, and I Quinto, and X Chen, and C Palmieri, and R L Rabin, and O M Schwartz, and D L Nelson, and G Scala
Department of Clinical and Experimental Medicine, Medical School, University of Catanzaro, 88100 Catanzaro, Italy.

Bruton's tyrosine kinase (Btk) is required for human and mouse B cell development. Btk deficiency causes X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency in mice. Unlike Src proteins, Btk lacks a negative regulatory domain at the COOH terminus and may rely on cytoplasmic Btk-binding proteins to regulates its kinase activity by trans-inhibitor mechanisms. Consistent with this possibility, IBtk, which we identified as an inhibitor of Btk, bound to the PH domain of Btk. IBtk downregulated Btk kinase activity, Btk-mediated calcium mobilization and nuclear factor-kappaB-driven transcription. These results define a potential mechanism for the regulation of Btk function in B cells.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077329 Agammaglobulinaemia Tyrosine Kinase A non-receptor tyrosine kinase that is essential for the development, maturation, and signaling of B-LYMPHOCYTES. It contains an N-terminal zinc finger motif and localizes primarily to the PLASMA MEMBRANE and nucleus of B-lymphocytes. Mutations in the gene that encode this kinase are associated with X-LINKED AGAMMAGLOBULINEMIA. B Cell Progenitor Kinase,Bruton's Tyrosine Kinase,Bruton Tyrosine Kinase,Brutons Tyrosine Kinase,Kinase, Agammaglobulinaemia Tyrosine,Kinase, Bruton's Tyrosine,Tyrosine Kinase, Agammaglobulinaemia,Tyrosine Kinase, Bruton's
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

W Liu, and I Quinto, and X Chen, and C Palmieri, and R L Rabin, and O M Schwartz, and D L Nelson, and G Scala
February 1999, Scandinavian journal of immunology,
W Liu, and I Quinto, and X Chen, and C Palmieri, and R L Rabin, and O M Schwartz, and D L Nelson, and G Scala
November 1999, FEBS letters,
W Liu, and I Quinto, and X Chen, and C Palmieri, and R L Rabin, and O M Schwartz, and D L Nelson, and G Scala
May 1999, Proceedings of the National Academy of Sciences of the United States of America,
W Liu, and I Quinto, and X Chen, and C Palmieri, and R L Rabin, and O M Schwartz, and D L Nelson, and G Scala
January 2004, Current pharmaceutical design,
W Liu, and I Quinto, and X Chen, and C Palmieri, and R L Rabin, and O M Schwartz, and D L Nelson, and G Scala
March 2004, Immunology letters,
W Liu, and I Quinto, and X Chen, and C Palmieri, and R L Rabin, and O M Schwartz, and D L Nelson, and G Scala
March 2014, Current hematologic malignancy reports,
W Liu, and I Quinto, and X Chen, and C Palmieri, and R L Rabin, and O M Schwartz, and D L Nelson, and G Scala
October 1998, Current biology : CB,
W Liu, and I Quinto, and X Chen, and C Palmieri, and R L Rabin, and O M Schwartz, and D L Nelson, and G Scala
August 2008, Nucleic acids research,
W Liu, and I Quinto, and X Chen, and C Palmieri, and R L Rabin, and O M Schwartz, and D L Nelson, and G Scala
January 2002, Methods in enzymology,
W Liu, and I Quinto, and X Chen, and C Palmieri, and R L Rabin, and O M Schwartz, and D L Nelson, and G Scala
September 1998, Biochemical pharmacology,
Copied contents to your clipboard!