Regulation of GABA release by nicotinic acetylcholine receptors in the neonatal rat hippocampus. 2001

L Maggi, and E Sher, and E Cherubini
Neuroscience Program and Istituto Nazionale di Fisica della Materia Unit, International School for Advanced Studies (SISSA),Via Beirut 2-4, 34014 Trieste, Italy.

1. The whole-cell configuration of the patch-clamp technique was used to study the modulation of giant depolarizing potentials (GDPs) by nicotinic acetylcholine receptors (nAChRs) in CA3 hippocampal neurons in slices from postnatal day (P) 2-6 rats. 2. Bath application of nicotine increased GDP frequency in a concentration-dependent manner. For example, nicotine (0.5-1 microM) enhanced GDP frequency from 0.05 +/- 0.04 to 0.17 +/- 0.04 Hz. This effect was prevented by the broad-spectrum nicotinic receptor antagonist dihydro-beta-erythtroidine (DHbetaE, 50 microM) and partially antagonized by methyllycaconitine (MLA, 50 nM) a competitive antagonist of alpha7 nAChRs. GDP frequency was also enhanced by AR-17779 (100 microM), a selective agonist of alpha7 nAChRs. 3. The GABA(A) receptor antagonist bicuculline (10 microM) and the non-NMDA glutamate receptor antagonist DNQX (20 microM) blocked GDPs and prevented the effects of nicotine on GDPs. In the presence of DNQX, nicotine increased GABA-mediated synaptic noise, indicating that this drug may have a direct effect on GABAergic interneurons. 4. Bath application of edrophonium (20 microM), a cholinesterase inhibitor, in the presence of atropine (1 microM), increased GDP frequency, indicating that nAChRs can be activated by ACh released from the septo-hippocampal fibres. This effect was prevented by DHbetaE (50 microM). 5. In the majority of neurons tested, MLA (50 nM) and DHbetaE (50 microM) reduced the frequency of GDPs with different efficacy: a reduction of 98 +/- 11 and 61 +/- 29 % was observed with DHbetaE and MLA, respectively. In a subset of cells (40 % in the case of MLA and 17 % in the case of DHbetaE) these drugs induced a twofold increase in GDP frequency. 6. It is suggested that, during development, nAChRs modulate the release of GABA, assessed as GDPs, through distinct nAChRs. The rise of intracellular calcium via nAChRs would further strengthen GABA-mediated oscillatory activity. This can be crucial for consolidation of synaptic contacts and for the fine-tuning of the developing hippocampus.

UI MeSH Term Description Entries
D007306 Insecticides Pesticides designed to control insects that are harmful to man. The insects may be directly harmful, as those acting as disease vectors, or indirectly harmful, as destroyers of crops, food products, or textile fabrics. Insecticide
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D011810 Quinoxalines Quinoxaline
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D001952 Bridged-Ring Compounds Cyclic hydrocarbons that contain multiple rings which share one or more bridgehead connections. Bridged Compounds,Bridged Ring Compounds
D004079 Dihydro-beta-Erythroidine Dihydro analog of beta-erythroidine, which is isolated from the seeds and other plant parts of Erythrina sp. Leguminosae. It is an alkaloid with curarimimetic properties. Dihydro beta Erythroidine,Erythroidine, Dihydro beta,beta Erythroidine, Dihydro
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums

Related Publications

L Maggi, and E Sher, and E Cherubini
February 1989, Journal of neuroscience research,
L Maggi, and E Sher, and E Cherubini
July 2010, Cerebral cortex (New York, N.Y. : 1991),
L Maggi, and E Sher, and E Cherubini
November 2005, European journal of pharmacology,
L Maggi, and E Sher, and E Cherubini
June 2020, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
L Maggi, and E Sher, and E Cherubini
August 2019, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
Copied contents to your clipboard!