Analysis of CLN3-protein interactions using the yeast two-hybrid system. 2001

K Y Leung, and N D Greene, and P B Munroe, and S E Mole
Heart Science Centre, Harefield Hospital, Middlesex, UK. kit-yi.leung@harefield.nthames.nhs.uk

Juvenile neuronal ceroid lipofuscinosis (Batten disease) is a childhood neurodegenerative disease that is caused by mutations in the CLN3 gene. The protein encoded by CLN3 has no homology with any proteins of known function and its cellular role remains elusive. In order to investigate the role played by the CLN3 protein we aimed to identify interacting proteins. Here, we describe the yeast two-hybrid system as the approach taken to investigate such protein-protein interactions. CLN3 was expressed as a fusion protein with a DNA-binding domain and used to screen a library of human fetal brain cDNAs fused to a transcriptional activation domain. Owing to low level expression of the full length CLN3 fusion protein, truncated regions corresponding to the predicted hydrophilic regions were also tested. No proteins that interact with CLN3 were detected, nor was there any evidence for CLN3-CLN3 interactions. Potential interaction of CLN3 with subunit c of mitochondrial ATP synthase, the major component of the storage material that accumulates in Batten disease patients, was also tested. No interaction was detected suggesting that the accumulation of subunit c does not result from loss of a process that requires a direct interaction with CLN3. We conclude that either CLN3 does not interact with other proteins or such interactions cannot be detected using the two-hybrid system.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009472 Neuronal Ceroid-Lipofuscinoses A group of severe neurodegenerative diseases characterized by intracellular accumulation of autofluorescent wax-like lipid materials (CEROID; LIPOFUSCIN) in neurons. There are several subtypes based on mutations of the various genes, time of disease onset, and severity of the neurological defects such as progressive DEMENTIA; SEIZURES; and visual failure. Batten Disease,Ceroid Lipofuscinosis, Neuronal, 4B, Autosomal Dominant,Ceroid-Lipofuscinosis, Neuronal,Jansky-Bielschowsky Disease,Kufs Disease,Santavuori-Haltia Disease,Spielmeyer-Vogt Disease,Adult Neuronal Ceroid Lipofuscinosis,Amaurotic Idiocy, Adult Type,Batten-Mayou Disease,Batten-Spielmeyer-Vogt Disease,CLN3-Related Neuronal Ceroid-Lipofuscinosis,CLN4A,CLN4B,Ceroid Lipofuscinosis, Neuronal 3, Juvenile,Ceroid Lipofuscinosis, Neuronal 4,Ceroid Lipofuscinosis, Neuronal, 3,Ceroid Lipofuscinosis, Neuronal, 4A, Autosomal Recessive,Ceroid Lipofuscinosis, Neuronal, Parry Type,Ceroid Storage Disease,Infantile Neuronal Ceroid Lipofuscinosis,Juvenile Batten Disease,Juvenile Cerebroretinal Degeneration,Juvenile Neuronal Ceroid Lipofuscinosis,Kuf's Disease,Kufs Disease Autosomal Recessive,Kufs Disease, Autosomal Dominant,Kufs Disease, Autosomal Recessive,Kufs Type Neuronal Ceroid Lipofuscinosis,Late-Infantile Neuronal Ceroid Lipofuscinosis,Lipofuscin Storage Disease,Lipofuscinosis, Neuronal Ceroid,Neuronal Ceroid Lipofuscinosis,Neuronal Ceroid Lipofuscinosis Juvenile Type,Neuronal Ceroid Lipofuscinosis, Adult,Neuronal Ceroid Lipofuscinosis, Adult Type,Neuronal Ceroid Lipofuscinosis, Infantile,Neuronal Ceroid Lipofuscinosis, Juvenile,Neuronal Ceroid Lipofuscinosis, Late Infantile,Neuronal Ceroid Lipofuscinosis, Late-Infantile,Neuronal Ceroid-Lipofuscinosis,Spielmeyer-Sjogren Disease,Vogt Spielmeyer Disease,Vogt-Spielmeyer Disease,Batten Disease, Juvenile,Batten Diseases, Juvenile,Batten Mayou Disease,Batten Spielmeyer Vogt Disease,CLN3 Related Neuronal Ceroid Lipofuscinosis,CLN3-Related Neuronal Ceroid-Lipofuscinoses,CLN4As,Cerebroretinal Degeneration, Juvenile,Cerebroretinal Degenerations, Juvenile,Ceroid Lipofuscinosis, Neuronal,Ceroid Storage Diseases,Ceroid-Lipofuscinosis, CLN3-Related Neuronal,Disease, Ceroid Storage,Disease, Juvenile Batten,Disease, Kuf's,Disease, Lipofuscin Storage,Disease, Spielmeyer-Sjogren,Disease, Vogt Spielmeyer,Disease, Vogt-Spielmeyer,Jansky Bielschowsky Disease,Juvenile Batten Diseases,Juvenile Cerebroretinal Degenerations,Kuf Disease,Lipofuscin Storage Diseases,Neuronal Ceroid Lipofuscinoses,Neuronal Ceroid-Lipofuscinoses, CLN3-Related,Neuronal Ceroid-Lipofuscinosis, CLN3-Related,Santavuori Haltia Disease,Spielmeyer Disease, Vogt,Spielmeyer Sjogren Disease,Spielmeyer Vogt Disease,Storage Disease, Ceroid,Storage Disease, Lipofuscin
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D018832 Molecular Chaperones A family of cellular proteins that mediate the correct assembly or disassembly of polypeptides and their associated ligands. Although they take part in the assembly process, molecular chaperones are not components of the final structures. Chaperones, Molecular,Chaperone, Molecular,Molecular Chaperone
D020798 Two-Hybrid System Techniques Screening techniques first developed in yeast to identify genes encoding interacting proteins. Variations are used to evaluate interplay between proteins and other molecules. Two-hybrid techniques refer to analysis for protein-protein interactions, one-hybrid for DNA-protein interactions, three-hybrid interactions for RNA-protein interactions or ligand-based interactions. Reverse n-hybrid techniques refer to analysis for mutations or other small molecules that dissociate known interactions. One-Hybrid System Techniques,Reverse One-Hybrid System Techniques,Reverse Two-Hybrid System Techniques,Three-Hybrid System Techniques,Yeast Two-Hybrid Assay,Yeast Two-Hybrid System Techniques,One-Hybrid System Technics,Reverse Three-Hybrid System Techniques,Three-Hybrid System Technics,Tri-Hybrid System Techniques,Two-Hybrid Assay,Two-Hybrid Method,Two-Hybrid System Technics,Yeast One-Hybrid System Techniques,Yeast Three-Hybrid Assay,Yeast Three-Hybrid System,Yeast Three-Hybrid System Techniques,Yeast Two-Hybrid System,n-Hybrid System Techniques,Assay, Two-Hybrid,Assay, Yeast Three-Hybrid,Assay, Yeast Two-Hybrid,Assays, Two-Hybrid,Assays, Yeast Three-Hybrid,Assays, Yeast Two-Hybrid,Method, Two-Hybrid,Methods, Two-Hybrid,One Hybrid System Technics,One Hybrid System Techniques,One-Hybrid System Technic,One-Hybrid System Technique,Reverse One Hybrid System Techniques,Reverse Three Hybrid System Techniques,Reverse Two Hybrid System Techniques,System Technique, n-Hybrid,System Techniques, n-Hybrid,System, Yeast Three-Hybrid,System, Yeast Two-Hybrid,Systems, Yeast Three-Hybrid,Systems, Yeast Two-Hybrid,Technic, One-Hybrid System,Technic, Three-Hybrid System,Technic, Two-Hybrid System,Technics, One-Hybrid System,Technics, Three-Hybrid System,Technics, Two-Hybrid System,Technique, One-Hybrid System,Technique, Three-Hybrid System,Technique, Tri-Hybrid System,Technique, Two-Hybrid System,Technique, n-Hybrid System,Techniques, One-Hybrid System,Techniques, Three-Hybrid System,Techniques, Tri-Hybrid System,Techniques, Two-Hybrid System,Techniques, n-Hybrid System,Three Hybrid System Technics,Three Hybrid System Techniques,Three-Hybrid Assay, Yeast,Three-Hybrid Assays, Yeast,Three-Hybrid System Technic,Three-Hybrid System Technique,Three-Hybrid System, Yeast,Three-Hybrid Systems, Yeast,Tri Hybrid System Techniques,Tri-Hybrid System Technique,Two Hybrid Assay,Two Hybrid Method,Two Hybrid System Technics,Two Hybrid System Techniques,Two-Hybrid Assay, Yeast,Two-Hybrid Assays,Two-Hybrid Assays, Yeast,Two-Hybrid Methods,Two-Hybrid System Technic,Two-Hybrid System Technique,Two-Hybrid System, Yeast,Two-Hybrid Systems, Yeast,Yeast One Hybrid System Techniques,Yeast Three Hybrid Assay,Yeast Three Hybrid System,Yeast Three Hybrid System Techniques,Yeast Three-Hybrid Assays,Yeast Three-Hybrid Systems,Yeast Two Hybrid Assay,Yeast Two Hybrid System,Yeast Two Hybrid System Techniques,Yeast Two-Hybrid Assays,Yeast Two-Hybrid Systems,n Hybrid System Techniques,n-Hybrid System Technique

Related Publications

K Y Leung, and N D Greene, and P B Munroe, and S E Mole
June 2009, Virus research,
K Y Leung, and N D Greene, and P B Munroe, and S E Mole
January 2017, Methods in molecular biology (Clifton, N.J.),
K Y Leung, and N D Greene, and P B Munroe, and S E Mole
January 2014, Methods in molecular biology (Clifton, N.J.),
K Y Leung, and N D Greene, and P B Munroe, and S E Mole
January 2008, Methods in molecular biology (Clifton, N.J.),
K Y Leung, and N D Greene, and P B Munroe, and S E Mole
January 2004, Methods in molecular biology (Clifton, N.J.),
K Y Leung, and N D Greene, and P B Munroe, and S E Mole
January 2011, Methods in molecular biology (Clifton, N.J.),
K Y Leung, and N D Greene, and P B Munroe, and S E Mole
January 2009, Methods in molecular biology (Clifton, N.J.),
K Y Leung, and N D Greene, and P B Munroe, and S E Mole
January 2003, The Journal of pathology,
K Y Leung, and N D Greene, and P B Munroe, and S E Mole
February 1995, Current opinion in biotechnology,
K Y Leung, and N D Greene, and P B Munroe, and S E Mole
December 2002, Plant molecular biology,
Copied contents to your clipboard!