Formation and effects of neuroactive steroids in the central and peripheral nervous system. 2001

R C Melcangi, and V Magnaghi, and M Galbiati, and L Martini
Department of Endocrinology, University of Milan, 20133, Milan, Italy.

This chapter summarizes several observations that emphasize the importance of neuroactive steroids in the physiology of the central and peripheral nervous systems. A new, and probably important, concept is emerging: Neuroactive steroids not only modify neuronal physiology but also intervene in the control of glial cell functions. The data presented here underscore that (1) the mechanism of action of the various steroidal molecules may involve both classical (progesterone and androgens) and nonclassical steroid receptors [gamma-aminobutyric acid type A (GABAA) receptor], (2) in many instances, the actions of hormonal steroids are not due to their native molecular forms but to their 5 alpha- and 3 alpha,5 alpha-reduced metabolites, (3) several neuroactive steroids exert dramatic actions on the proteins proper of the peripheral myelin (e.g., glycoprotein Po and peripheral myelin protein 22), and (4) the effects of steroids and of their metabolites might have clinical significance in cases in which the rebuilding of the peripheral myelin is needed (e.g., aging, peripheral injury).

UI MeSH Term Description Entries
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000728 Androgens Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power. Androgen,Androgen Receptor Agonist,Androgen Effect,Androgen Effects,Androgen Receptor Agonists,Androgenic Agents,Androgenic Compounds,Agents, Androgenic,Agonist, Androgen Receptor,Agonists, Androgen Receptor,Compounds, Androgenic,Effect, Androgen,Effects, Androgen,Receptor Agonist, Androgen,Receptor Agonists, Androgen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017933 Peripheral Nervous System The nervous system outside of the brain and spinal cord. The peripheral nervous system has autonomic and somatic divisions. The autonomic nervous system includes the enteric, parasympathetic, and sympathetic subdivisions. The somatic nervous system includes the cranial and spinal nerves and their ganglia and the peripheral sensory receptors. Nervous System, Peripheral,Nervous Systems, Peripheral,Peripheral Nervous Systems,System, Peripheral Nervous,Systems, Peripheral Nervous

Related Publications

R C Melcangi, and V Magnaghi, and M Galbiati, and L Martini
January 2001, International review of neurobiology,
R C Melcangi, and V Magnaghi, and M Galbiati, and L Martini
April 1995, Sheng li ke xue jin zhan [Progress in physiology],
R C Melcangi, and V Magnaghi, and M Galbiati, and L Martini
December 2009, Psychoneuroendocrinology,
R C Melcangi, and V Magnaghi, and M Galbiati, and L Martini
January 2011, Frontiers in endocrinology,
R C Melcangi, and V Magnaghi, and M Galbiati, and L Martini
November 2015, Steroids,
R C Melcangi, and V Magnaghi, and M Galbiati, and L Martini
November 2020, International journal of molecular sciences,
R C Melcangi, and V Magnaghi, and M Galbiati, and L Martini
January 2018, Frontiers in neuroendocrinology,
R C Melcangi, and V Magnaghi, and M Galbiati, and L Martini
March 2008, Brain research reviews,
R C Melcangi, and V Magnaghi, and M Galbiati, and L Martini
March 1960, Nordisk medicin,
R C Melcangi, and V Magnaghi, and M Galbiati, and L Martini
March 2008, Brain research reviews,
Copied contents to your clipboard!