Bacteriophage T4-coded dihydrofolate reductase: synthesis, turnover, and location of the virion protein. 1979

R A Mosher, and C K Mathews

Dihydrofolate reductase plays a dual role in bacteriophage T4, first, as an enzyme of thymidylate metabolism, and second, as a protein component of the tail baseplate. Antibody to the purified enzyme has been used to study its synthesis and intracellular turnover. The antibody specifically precipitates one protein from T4D-infected cell extracts. This has been identified as dihydrofolate reductase, although the polypeptide molecular weight (22,000) is lower than that earlier determined for this enzyme. The protein comigrates on gels with pY, a genetically undefined protein component of the baseplate. However, it is not pY, for pY is synthesized late in infection, whereas virtually no dihydrofolate reductase synthesis occurs later than 10 min after infection at 37 degrees C. Dihydrofolate reductase, once formed, is neither degraded nor converted to proteins of higher or lower molecular weight. Thus, it is probably incorporated into virions at the same molecular weight as that of the soluble enzyme. 125I-radiolabeled antibody binds to the wedge substructure of the baseplate, and this binding is blocked by preincubation with purified T4 dihydrofolate reductase. Thus, the enzyme protein seems to be a component of the wedge.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D005779 Immunodiffusion Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction. Gel Diffusion Tests,Diffusion Test, Gel,Diffusion Tests, Gel,Gel Diffusion Test,Immunodiffusions,Test, Gel Diffusion,Tests, Gel Diffusion
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage
D013762 Tetrahydrofolate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the reaction 7,8-dihyrofolate and NADPH to yield 5,6,7,8-tetrahydrofolate and NADPH+, producing reduced folate for amino acid metabolism, purine ring synthesis, and the formation of deoxythymidine monophosphate. Methotrexate and other folic acid antagonists used as chemotherapeutic drugs act by inhibiting this enzyme. (Dorland, 27th ed) EC 1.5.1.3. Dihydrofolate Dehydrogenase,Dihydrofolate Reductase,Folic Acid Reductase,Acid Reductase, Folic,Dehydrogenase, Dihydrofolate,Dehydrogenase, Tetrahydrofolate,Reductase, Dihydrofolate,Reductase, Folic Acid
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral

Related Publications

R A Mosher, and C K Mathews
September 1977, Journal of virology,
R A Mosher, and C K Mathews
September 1987, The Journal of biological chemistry,
R A Mosher, and C K Mathews
August 1967, Proceedings of the National Academy of Sciences of the United States of America,
R A Mosher, and C K Mathews
September 1981, The Journal of biological chemistry,
R A Mosher, and C K Mathews
June 1971, Biochemical and biophysical research communications,
R A Mosher, and C K Mathews
November 1971, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!