Virus targeting of the tumor necrosis factor superfamily. 2001

C A Benedict, and C F Ware
Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA.

Herpesviruses appear to peacefully coexist with their natural hosts, with infection typically manifested as a benign, but lifelong process. However, coexistence depends on active resistance by innate and specific immune defenses as revealed in the striking virulence of herpesviruses when immunity fails. This pattern of infection is characteristic of a viral pathogen, such as cytomegalovirus, that has evolved efficient strategies targeted at host defense systems. Targeting members of the tumor necrosis factor (TNF)/lymphotoxin (LT) superfamily of cytokines is a strategy found in all herpesviruses, which suggests the existence of an intimate evolutionary link in their host-parasite relationship. Here we examine some of the strategies used by herpesvirus that target members of the TNF superfamily and discuss a recent study that revealed a novel mechanism that links LT-related ligands and interferons (IFN) to the establishment of coexistence between herpesvirus and its host cell.

UI MeSH Term Description Entries
D008233 Lymphotoxin-alpha A tumor necrosis factor family member that is released by activated LYMPHOCYTES. Soluble lymphotoxin is specific for TUMOR NECROSIS FACTOR RECEPTOR TYPE I; TUMOR NECROSIS FACTOR RECEPTOR TYPE II; and TUMOR NECROSIS FACTOR RECEPTOR SUPERFAMILY, MEMBER 14. Lymphotoxin-alpha can form a membrane-bound heterodimer with LYMPHOTOXIN-BETA that has specificity for the LYMPHOTOXIN BETA RECEPTOR. TNF Superfamily, Member 1,TNF-beta,Tumor Necrosis Factor Ligand Superfamily Member 1,Tumor Necrosis Factor-beta,Lymphotoxin,Lymphotoxin-alpha3,Soluble Lymphotoxin-alpha,alpha-Lymphotoxin,Lymphotoxin alpha,Lymphotoxin alpha3,Lymphotoxin-alpha, Soluble,Soluble Lymphotoxin alpha,Tumor Necrosis Factor beta,alpha Lymphotoxin
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D006564 Herpesviridae A family of enveloped, linear, double-stranded DNA viruses infecting a wide variety of animals. Subfamilies, based on biological characteristics, include: ALPHAHERPESVIRINAE; BETAHERPESVIRINAE; and GAMMAHERPESVIRINAE. Mouse Thymic Virus,Murid herpesvirus 3,Thymic Group Viruses,Herpesviruses,Mouse Thymic Viruses,Thymic Virus, Mouse,Thymic Viruses, Mouse
D006566 Herpesviridae Infections Virus diseases caused by the HERPESVIRIDAE. Herpesvirus Infections,B Virus Infection,Infections, Herpesviridae,Infections, Herpesvirus,B Virus Infections,Herpesviridae Infection,Herpesvirus Infection,Infection, B Virus,Infection, Herpesviridae,Infection, Herpesvirus,Infections, B Virus
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha

Related Publications

C A Benedict, and C F Ware
January 1995, Journal of inflammation,
C A Benedict, and C F Ware
January 1999, Journal of molecular graphics & modelling,
C A Benedict, and C F Ware
January 2002, Immunologic research,
C A Benedict, and C F Ware
January 2006, Future cardiology,
C A Benedict, and C F Ware
January 2018, Science signaling,
C A Benedict, and C F Ware
May 2009, Immunological reviews,
C A Benedict, and C F Ware
January 2006, Current directions in autoimmunity,
Copied contents to your clipboard!