1alpha,25-Dihydroxyvitamin D3 modulates human adipocyte metabolism via nongenomic action. 2001

H Shi, and A W Norman, and W H Okamura, and A Sen, and M B Zemel
University of Tennessee, Knoxville, Tennessee 37996, USA.

We reported recently that suppression of the renal 1alpha,25-dihyroxyvitamin D3 (1lpha,25-(OH)2-D3) production in aP2-agouti transgenic mice by increasing dietary calcium decreases adipocyte intracellular Ca2+ ([Ca2+]i), stimulates lipolysis, inhibits lipogenesis, and reduces adiposity. However, it was not clear whether this modulation of adipocyte metabolism by dietary calcium is a direct effect of inhibition of 1alpha,25-(OH)2-D3-induced [Ca2+]i. Accordingly, we have now evaluated the direct role of 1alpha,25-(OH)2-D3. Human adipocytes exhibited a 1alpha,25-(OH)2-D3 dose-responsive (1-50 nM) increase in [Ca2+]i (P<0.01). This action was mimicked by 1alpha,25-dihyroxylumisterol3 (1alpha,25-(OH)2-lumisterol3) (P<0.001), a specific agonist for a putative membrane vitamin D receptor (mVDR), and completely prevented by 1b,25-dihydroxyvitamin D3 (1beta,25-(OH)2-D3), a specific antagonist for the mVDR. Similarly, 1alpha,25-(OH)2-D3 (5 nM) caused 50%-100% increases in adipocyte fatty acid synthase (FAS) expression and activity (P<0.02), a 61% increase in glycerol-3-phosphate dehydrogenase (GPDH) activity (P<0.01), and an 80% inhibition of isoproterenol-stimulated lipolysis (P<0.001), whereas 1beta,25-(OH)2-D3 completely blocked all these effects. Notably, 1alpha,25-(OH)2-lumisterol3 exerted more potent effects in modulating adipocyte lipid metabolism, with 2.5- to 3.0-fold increases in FAS expression and activity (P<0.001) and a threefold increase in GPDH activity (P<0.001). Also 1alpha,25-(OH)2-lumisterol3 was approximately twice as potent in inhibiting basal lipolysis (P<0.025), whereas 1beta,25-(OH)2-D3 completely blocked all these effects. These data suggest that 1alpha,25-(OH)2-D3 modulates adipocyte Ca2+ signaling and, consequently, exerts a coordinated control over lipogenesis and lipolysis. Thus, a direct inhibition of 1alpha,25-(OH)2-D3-induced [Ca2+]i may contribute to an anti-obesity effect of dietary calcium, and the mVDR may represent an important target for obesity.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008066 Lipolysis The metabolic process of breaking down LIPIDS to release FREE FATTY ACIDS, the major oxidative fuel for the body. Lipolysis may involve dietary lipids in the DIGESTIVE TRACT, circulating lipids in the BLOOD, and stored lipids in the ADIPOSE TISSUE or the LIVER. A number of enzymes are involved in such lipid hydrolysis, such as LIPASE and LIPOPROTEIN LIPASE from various tissues. Lipolyses
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004100 Dihydroxycholecalciferols Cholecalciferols substituted with two hydroxy groups in any position. Dihydroxyvitamins D
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005993 Glycerolphosphate Dehydrogenase Alpha-Glycerophosphate Dehydrogenase,Glycerol-3-Phosphate Dehydrogenase,Glycerophosphate Dehydrogenase,Glycerophosphate Oxidase,Alpha Glycerophosphate Dehydrogenase,Dehydrogenase, Alpha-Glycerophosphate,Dehydrogenase, Glycerol-3-Phosphate,Dehydrogenase, Glycerolphosphate,Dehydrogenase, Glycerophosphate,Glycerol 3 Phosphate Dehydrogenase,Oxidase, Glycerophosphate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

H Shi, and A W Norman, and W H Okamura, and A Sen, and M B Zemel
December 1996, Journal of immunology (Baltimore, Md. : 1950),
H Shi, and A W Norman, and W H Okamura, and A Sen, and M B Zemel
August 2003, Melanoma research,
H Shi, and A W Norman, and W H Okamura, and A Sen, and M B Zemel
August 2007, Obesity (Silver Spring, Md.),
H Shi, and A W Norman, and W H Okamura, and A Sen, and M B Zemel
September 1975, Biochemical and biophysical research communications,
H Shi, and A W Norman, and W H Okamura, and A Sen, and M B Zemel
December 1998, Trends in endocrinology and metabolism: TEM,
H Shi, and A W Norman, and W H Okamura, and A Sen, and M B Zemel
January 2006, Anticancer research,
H Shi, and A W Norman, and W H Okamura, and A Sen, and M B Zemel
December 1976, Life sciences,
H Shi, and A W Norman, and W H Okamura, and A Sen, and M B Zemel
December 2000, Molecular and cellular endocrinology,
H Shi, and A W Norman, and W H Okamura, and A Sen, and M B Zemel
November 1998, Journal of dermatological science,
Copied contents to your clipboard!