Evolution of average evoked potentials in cats during conditioning before and after tegmental lesions. 1975

J Majkowski, and A Sobieszek

Sensory-specific and modality nonspecific average evoked potentials (AEPs) were recorded from the cortical areas and subcortical structures in two groups of cats: (1) normal cats which after conditioning were subjected to brainstem lesions and reconditioning; (2) cats with brainstem lesions and subsequent conditioning. A new waveshape of the visually evoked potenials developed in the visual cortex in the course of conditioning to light flashes (LF) in both groups of cats. In normal cats, a new component, with a peak latency from 80-100 msec and with reversed polarity, was observed in place of the late, longlasting, component of the preconditioning AEP. The latency of the new component is longer in cats with brainstem lesions. The first signs of waveform modification occurred relatively early in the process of learning, well before the animal learned to react consistently to the conditioned stimulus. Also, there seemed to be no clear relationship between the modified waveshapes of the AEPs and performance level during a particular session of conditioning. The modifications did not depend on habituation to the long-lasting exposure to light flashes presented alone. The new waveshape was preserved to a variable degree after brainstem lesions, that is, reconditioning never started with a potential characteristic for a naive animal. AEPs to licks in the auditory cortex, also changed during conditioning, although this modification was not so evident as in visual responses. In contrast to evident modifications of evoked responses in sensory specific structures during the process of conditiong, there were very small if any, changes in modality nonspecific structures, including brainstem reticular formation. Modality nonspecific responses were obtained from the brainstem reticular formation and motor cortex to light flashes and clicks, from the visual cortex to auditory stimuli and from the auditory cortex to light flashes. Only poorly developed evoked responses could be detected in the motor-sensory cortex during conditioning to light flashes although rhythmic EEG activity related to presentation of the conditioned stimulus (CS) was observed from this arena - thus indicating that they were not the same phenomena.

UI MeSH Term Description Entries
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D012154 Reticular Formation A region extending from the PONS & MEDULLA OBLONGATA through the MESENCEPHALON, characterized by a diversity of neurons of various sizes and shapes, arranged in different aggregations and enmeshed in a complicated fiber network. Formation, Reticular,Formations, Reticular,Reticular Formations
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003213 Conditioning, Psychological Simple form of learning involving the formation, strengthening, or weakening of an association between a stimulus and a response. Conditioning, Psychology,Psychological Conditioning,Social Learning Theory,Social Learning Theories,Theory, Social Learning
D003214 Conditioning, Classical Learning that takes place when a conditioned stimulus is paired with an unconditioned stimulus. Reflex, Conditioned,Classical Conditioning,Classical Conditionings,Conditioned Reflex,Conditionings, Classical
D003216 Conditioning, Operant Learning situations in which the sequence responses of the subject are instrumental in producing reinforcement. When the correct response occurs, which involves the selection from among a repertoire of responses, the subject is immediately reinforced. Instrumental Learning,Learning, Instrumental,Operant Conditioning,Conditionings, Operant,Instrumental Learnings,Learnings, Instrumental,Operant Conditionings
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006185 Habituation, Psychophysiologic The disappearance of responsiveness to a repeated stimulation. It does not include drug habituation. Habituation (Psychophysiology),Habituation, Psychophysiological,Psychophysiologic Habituation,Psychophysiological Habituation,Habituations (Psychophysiology)

Related Publications

J Majkowski, and A Sobieszek
January 1986, Physiology & behavior,
J Majkowski, and A Sobieszek
June 1988, Biological psychology,
J Majkowski, and A Sobieszek
August 1963, Science (New York, N.Y.),
J Majkowski, and A Sobieszek
December 1988, Behavioral neuroscience,
J Majkowski, and A Sobieszek
January 1966, Comptes rendus des seances de la Societe de biologie et de ses filiales,
J Majkowski, and A Sobieszek
October 1970, Electroencephalography and clinical neurophysiology,
J Majkowski, and A Sobieszek
July 1967, Journal of neurophysiology,
J Majkowski, and A Sobieszek
September 1975, Journal of speech and hearing research,
J Majkowski, and A Sobieszek
December 1972, Les Cahiers de medecine,
J Majkowski, and A Sobieszek
June 1974, Electroencephalography and clinical neurophysiology,
Copied contents to your clipboard!