Effect of PGE1 on gluconeogenesis and glycerol esterification in perfused liver of fasted rats. 1975

E Imesch, and S Rous

Using perfused livers of rats fasted for 48 hours, glucose production and incoroporation of 2-14C pyruvate (trace dose) into perfusate glucose were studied. Both were found to be inhibited by PGE1 (infuced at a concentration of 0.5 mu/min) by about 60%. The incorporation of 1-14C glycerol into perfusate glucose and into glycerol-glyceride part of the liver glycerides were also studied, using the same test conditions. The former incorporation was significantly inhibited (56%) and the latter strongly stimulated (360 %) by PGE1. PGE1 had no effect on glucose production in a perfusate overloaded with sodium pyruvate, nor on pyruvate carboxylase and phospho-enolpyruvate carboxykinase activity. this was in contrast with the results obtained in perfusions with a trace dose of 2-14C pyruvate. The results showed that PGE1, at the physiological concentration used, stimulated the incorporation of 1-14C glycerol into glycerol-glyceride part of liver glycerides and, when there was no overload of pyruvate present in the perfusion medium, inhibited gluconeogensis at some point, possibly, but perhaps not exclusively, between the glycerol and glucose steps.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D010729 Phosphoenolpyruvate Carboxykinase (GTP) An enzyme of the lyase class that catalyzes the conversion of GTP and oxaloacetate to GDP, phosphoenolpyruvate, and carbon dioxide. This reaction is part of gluconeogenesis in the liver. The enzyme occurs in both the mitochondria and cytosol of mammalian liver. (From Dorland, 27th ed) EC 4.1.1.32. GTP-Dependent Phosphoenolpyruvate Carboxykinase,Carboxykinase, GTP-Dependent Phosphoenolpyruvate,GTP Dependent Phosphoenolpyruvate Carboxykinase,Phosphoenolpyruvate Carboxykinase, GTP-Dependent
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D011766 Pyruvate Carboxylase A biotin-dependent enzyme belonging to the ligase family that catalyzes the addition of CARBON DIOXIDE to pyruvate. It is occurs in both plants and animals. Deficiency of this enzyme causes severe psychomotor retardation and ACIDOSIS, LACTIC in infants. EC 6.4.1.1. Carboxylase, Pyruvate
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D005215 Fasting Abstaining from FOOD. Hunger Strike,Hunger Strikes,Strike, Hunger,Strikes, Hunger
D005260 Female Females
D005943 Gluconeogenesis Biosynthesis of GLUCOSE from nonhexose or non-carbohydrate precursors, such as LACTATE; PYRUVATE; ALANINE; and GLYCEROL.

Related Publications

E Imesch, and S Rous
September 1971, Revista espanola de fisiologia,
E Imesch, and S Rous
February 1981, Endocrinologia japonica,
E Imesch, and S Rous
January 1989, Journal of biochemical toxicology,
E Imesch, and S Rous
September 1985, The American journal of physiology,
Copied contents to your clipboard!