A senescence-associated S-like RNase in the multicellular green alga Volvox carteri. 2001

T Shimizu, and T Inoue, and H Shiraishi
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.

Asexual individuals of the green alga Volvox carteri consist of only two cell types: somatic and reproductive cells. The somatic cells are terminally differentiated, post-mitotic cells which undergo gradual senescence leading to cell death in every generation. To elucidate the self-degrading process of macromolecules associated with senescence, we attempted to clone an RNase whose mRNA accumulation is increased during senescence. The corresponding cDNA clone VRN1, encoding an S-like RNase of V. carteri, is the first T(2)/S-like RNase to be cloned from green algae. Semi-quantitative RT-PCR analysis revealed that a relative amount of VRN1 mRNA is more than three-fold higher in the senescent somatic cells than in young somatic cells when the mRNA of ribosomal protein S18 is used as an internal standard. VRN1 mRNA is not induced by phosphate starvation, indicating that its accumulation during senescence is not due to a self-induced defect in utilizing phosphates. Similar regulation has been reported for RNS3, which encodes the S-like RNase that is induced in senescent leaves of Arabidopsis thaliana. These observations imply that VRN1 may promote RNA degradation during senescence of somatic cells in V. carteri, and that its regulation has similarity with that of certain senescence-associated RNases in higher plants.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D000460 Chlorophyta A phylum of photosynthetic EUKARYOTA bearing double membrane-bound plastids containing chlorophyll a and b. They comprise the classical green algae, and represent over 7000 species that live in a variety of primarily aquatic habitats. Only about ten percent are marine species, most live in freshwater. Algae, Green,Chlorophytina,Green Algae
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

T Shimizu, and T Inoue, and H Shiraishi
January 2014, Science China. Life sciences,
T Shimizu, and T Inoue, and H Shiraishi
January 2015, PloS one,
T Shimizu, and T Inoue, and H Shiraishi
July 1997, Proceedings of the National Academy of Sciences of the United States of America,
T Shimizu, and T Inoue, and H Shiraishi
July 2010, Science (New York, N.Y.),
T Shimizu, and T Inoue, and H Shiraishi
July 1982, Experimental cell research,
T Shimizu, and T Inoue, and H Shiraishi
January 2019, Plant signaling & behavior,
T Shimizu, and T Inoue, and H Shiraishi
September 1981, Cell biology international reports,
T Shimizu, and T Inoue, and H Shiraishi
September 2014, BMC genomics,
Copied contents to your clipboard!