Regional mapping of suppressor loci for anchorage independence and tumorigenicity on human chromosome 9. 2001

L K Eklund, and K Islam, and P Söderkvist, and M Q Islam
Division of Cell Biology, Department of Biomedicine and Surgery, Faculty of Health Sciences, Linköping University S-581 85, Linköping, Sweden.

By microcell-mediated chromosome transfer to the malignant Syrian hamster cell line BHK-191-5C, we previously identified two suppressor functions on human chromosome 9 (HSA9), one for anchorage independence and another for tumorigenicity. However, the precise chromosomal locations of these suppressor functions were not determined. The present study was undertaken to define the regional location of these suppressor loci using a panel of microcell hybrids containing structurally altered HSA9 with different deleted regions in the BHK-191-5C background. DNA derived from the cell hybrids was analyzed by PCR for verification of the presence of HSA9 genetic material by amplifying 62 microsatellite markers and 13 genes, covering the entire length of HSA9. Our deletion mapping data on anchorage independent and tumorigenic hybrids suggest that the suppressor function for anchorage independence is located in the region between 9q32 to 9qter. The suppressor for tumorigenicity may be located in one of three deleted regions on HSA9, the first one between the markers D9S162 and D9S1870, the second one between the markers D9S1868 and TIGRA002I21, and the third one between the markers D9S59 and D9S155.

UI MeSH Term Description Entries
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002899 Chromosomes, Human, Pair 9 A specific pair of GROUP C CHROMSOMES of the human chromosome classification. Chromosome 9
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016147 Genes, Tumor Suppressor Genes that inhibit expression of the tumorigenic phenotype. They are normally involved in holding cellular growth in check. When tumor suppressor genes are inactivated or lost, a barrier to normal proliferation is removed and unregulated growth is possible. Antioncogenes,Cancer Suppressor Genes,Emerogenes,Genes, Cancer Suppressor,Genes, Growth Suppressor,Genes, Metastasis Suppressor,Growth Suppressor Genes,Metastasis Suppressor Genes,Tumor Suppressor Genes,Anti-Oncogenes,Genes, Onco-Suppressor,Oncogenes, Recessive,Tumor Suppressing Genes,Anti Oncogenes,Anti-Oncogene,Antioncogene,Cancer Suppressor Gene,Emerogene,Gene, Cancer Suppressor,Gene, Growth Suppressor,Gene, Metastasis Suppressor,Gene, Onco-Suppressor,Gene, Tumor Suppressing,Gene, Tumor Suppressor,Genes, Onco Suppressor,Genes, Tumor Suppressing,Growth Suppressor Gene,Metastasis Suppressor Gene,Onco-Suppressor Gene,Onco-Suppressor Genes,Oncogene, Recessive,Recessive Oncogene,Recessive Oncogenes,Suppressor Gene, Cancer,Suppressor Gene, Growth,Suppressor Gene, Metastasis,Suppressor Genes, Cancer,Suppressor Genes, Growth,Suppressor Genes, Metastasis,Tumor Suppressing Gene,Tumor Suppressor Gene

Related Publications

L K Eklund, and K Islam, and P Söderkvist, and M Q Islam
November 1993, Cancer research,
L K Eklund, and K Islam, and P Söderkvist, and M Q Islam
July 1980, International journal of cancer,
L K Eklund, and K Islam, and P Söderkvist, and M Q Islam
January 2000, Cytogenetics and cell genetics,
L K Eklund, and K Islam, and P Söderkvist, and M Q Islam
March 1994, Genomics,
L K Eklund, and K Islam, and P Söderkvist, and M Q Islam
January 1979, Cytogenetics and cell genetics,
L K Eklund, and K Islam, and P Söderkvist, and M Q Islam
January 1976, Cytogenetics and cell genetics,
L K Eklund, and K Islam, and P Söderkvist, and M Q Islam
January 1995, Cancer research,
L K Eklund, and K Islam, and P Söderkvist, and M Q Islam
January 1995, Genomics,
Copied contents to your clipboard!