The role of nitric oxide in amyotrophic lateral sclerosis. 2001

M Urushitani, and S Shimohama
Department of Neurology, Graduate School of Medicine, Kyoto University, Sakyoku, Japan.

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective motor neuronal death. The cause of ALS is unclear, but accumulating evidence, such as the insufficient clearance of glutamate through the glutamate transporter, and the specific distribution of Ca2+-permeable AMPA receptors in spinal motor neurons, indicates that glutamate-induced neurotoxicity is involved in its pathogenesis. Interestingly, nitric oxide (NO), which has been identified as an endothelium-derived relaxing factor (EDRF), was found to be a pivotal inducer of glutamate-induced neuronal death. NO is generated by nitric oxide synthase (NOS), of which there are three subtypes: neuronal NOS expressed mainly in neurons, inducible NOS in astroglia, and endothelial NOS in vessels. NO-related toxicity is caused by peroxynitrite, formed by the reaction of NO with superoxide anions, resulting in the nitration of tyrosine residues in neurofilaments, irreversible inhibition of the mitochondrial respiratory chain, and inhibition of the glutamate transporter. Clinically, the axonal spheroids of motor neurons are reported to be immunoreactive to anti-nitrotyrosine antibody, and there are elevated levels of the metabolites of NO in the cerebrospinal fluid of ALS patients. Since physiologically normal motor neurons express limited amounts of neuronal NOS, the source of NO is considered to be non-motor neurons expressing neuronal NOS, astroglia expressing inducible NOS, or motor neurons themselves inducing neuronal NOS. Conversely, neurons containing neuronal NOS are known to be resistant to toxic stimuli, which raises the possibility that such neurons are protected by NO. Several mechanisms have been reported to mediate the NO-related neuroprotection, including cyclic guanosine 3',5'-monophosphate (cyclic GMP), a downstream product of NO generation. This review summarizes previous studies on NO, focusing on its dual functions of neurotoxicity or neuroprotection, and discusses the putative roles of NO in relation to the pathogenesis of ALS.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072105 Superoxide Dismutase-1 A superoxide dismutase (SOD1) that requires copper and zinc ions for its activity to destroy SUPEROXIDE FREE RADICALS within the CYTOPLASM. Mutations in the SOD1 gene are associated with AMYOTROPHIC LATERAL SCLEROSIS-1. Cu-Zn Superoxide Dismutase,Cuprozinc Superoxide Dismutase,SOD-1 Protein,SOD1 Protein,Superoxide Dismutase 1,Cu Zn Superoxide Dismutase,SOD 1 Protein,Superoxide Dismutase, Cu-Zn,Superoxide Dismutase, Cuprozinc
D000690 Amyotrophic Lateral Sclerosis A degenerative disorder affecting upper MOTOR NEURONS in the brain and lower motor neurons in the brain stem and SPINAL CORD. Disease onset is usually after the age of 50 and the process is usually fatal within 3 to 6 years. Clinical manifestations include progressive weakness, atrophy, FASCICULATION, hyperreflexia, DYSARTHRIA, dysphagia, and eventual paralysis of respiratory function. Pathologic features include the replacement of motor neurons with fibrous ASTROCYTES and atrophy of anterior SPINAL NERVE ROOTS and corticospinal tracts. (From Adams et al., Principles of Neurology, 6th ed, pp1089-94) ALS - Amyotrophic Lateral Sclerosis,Lou Gehrig Disease,Motor Neuron Disease, Amyotrophic Lateral Sclerosis,Amyotrophic Lateral Sclerosis With Dementia,Amyotrophic Lateral Sclerosis, Guam Form,Amyotrophic Lateral Sclerosis, Parkinsonism-Dementia Complex of Guam,Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia Complex 1,Charcot Disease,Dementia With Amyotrophic Lateral Sclerosis,Gehrig's Disease,Guam Disease,Guam Form of Amyotrophic Lateral Sclerosis,Lou Gehrig's Disease,Lou-Gehrigs Disease,ALS Amyotrophic Lateral Sclerosis,Amyotrophic Lateral Sclerosis Parkinsonism Dementia Complex 1,Amyotrophic Lateral Sclerosis, Parkinsonism Dementia Complex of Guam,Disease, Guam,Disease, Lou-Gehrigs,Gehrig Disease,Gehrigs Disease,Sclerosis, Amyotrophic Lateral
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016166 Free Radical Scavengers Substances that eliminate free radicals. Among other effects, they protect PANCREATIC ISLETS against damage by CYTOKINES and prevent myocardial and pulmonary REPERFUSION INJURY. Free Radical Scavenger,Radical Scavenger, Free,Scavenger, Free Radical,Scavengers, Free Radical
D016923 Cell Death The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability. Death, Cell
D018696 Neuroprotective Agents Drugs intended to prevent damage to the brain or spinal cord from ischemia, stroke, convulsions, or trauma. Some must be administered before the event, but others may be effective for some time after. They act by a variety of mechanisms, but often directly or indirectly minimize the damage produced by endogenous excitatory amino acids. Neuroprotectant,Neuroprotective Agent,Neuroprotective Drug,Neuroprotectants,Neuroprotective Drugs,Neuroprotective Effect,Neuroprotective Effects,Agent, Neuroprotective,Agents, Neuroprotective,Drug, Neuroprotective,Drugs, Neuroprotective,Effect, Neuroprotective,Effects, Neuroprotective

Related Publications

M Urushitani, and S Shimohama
October 1998, Journal of the neurological sciences,
M Urushitani, and S Shimohama
January 2005, Redox report : communications in free radical research,
M Urushitani, and S Shimohama
September 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases,
M Urushitani, and S Shimohama
January 2002, Progress in neuro-psychopharmacology & biological psychiatry,
M Urushitani, and S Shimohama
November 2006, Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology,
M Urushitani, and S Shimohama
December 1998, European journal of cell biology,
M Urushitani, and S Shimohama
January 2015, Current sports medicine reports,
M Urushitani, and S Shimohama
January 2019, Advances in experimental medicine and biology,
M Urushitani, and S Shimohama
January 2019, Advances in experimental medicine and biology,
Copied contents to your clipboard!